Plotting

 Veličković, Petar


How does over-squashing affect the power of GNNs?

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are the state-of-the-art model for machine learning on graph-structured data. The most popular class of GNNs operate by exchanging information between adjacent nodes, and are known as Message Passing Neural Networks (MPNNs). Given their widespread use, understanding the expressive power of MPNNs is a key question. However, existing results typically consider settings with uninformative node features. In this paper, we provide a rigorous analysis to determine which function classes of node features can be learned by an MPNN of a given capacity. We do so by measuring the level of pairwise interactions between nodes that MPNNs allow for. This measure provides a novel quantitative characterization of the so-called over-squashing effect, which is observed to occur when a large volume of messages is aggregated into fixed-size vectors. Using our measure, we prove that, to guarantee sufficient communication between pairs of nodes, the capacity of the MPNN must be large enough, depending on properties of the input graph structure, such as commute times. For many relevant scenarios, our analysis results in impossibility statements in practice, showing that over-squashing hinders the expressive power of MPNNs. We validate our theoretical findings through extensive controlled experiments and ablation studies.


Neural Priority Queues for Graph Neural Networks

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have shown considerable success in neural algorithmic reasoning. Many traditional algorithms make use of an explicit memory in the form of a data structure. However, there has been limited exploration on augmenting GNNs with external memory. In this paper, we present Neural Priority Queues, a differentiable analogue to algorithmic priority queues, for GNNs. We propose and motivate a desiderata for memory modules, and show that Neural PQs exhibit the desiderata, and reason about their use with algorithmic reasoning. This is further demonstrated by empirical results on the CLRS-30 dataset. Furthermore, we find the Neural PQs useful in capturing long-range interactions, as empirically shown on a dataset from the Long-Range Graph Benchmark.


Latent Space Representations of Neural Algorithmic Reasoners

arXiv.org Artificial Intelligence

Neural Algorithmic Reasoning (NAR) is a research area focused on designing neural architectures that can reliably capture classical computation, usually by learning to execute algorithms. A typical approach is to rely on Graph Neural Network (GNN) architectures, which encode inputs in high-dimensional latent spaces that are repeatedly transformed during the execution of the algorithm. In this work we perform a detailed analysis of the structure of the latent space induced by the GNN when executing algorithms. We identify two possible failure modes: (i) loss of resolution, making it hard to distinguish similar values; (ii) inability to deal with values outside the range observed during training. We propose to solve the first issue by relying on a softmax aggregator, and propose to decay the latent space in order to deal with out-of-range values. We show that these changes lead to improvements on the majority of algorithms in the standard CLRS-30 benchmark when using the state-of-the-art Triplet-GMPNN processor. Our code is available at \href{https://github.com/mirjanic/nar-latent-spaces}{https://github.com/mirjanic/nar-latent-spaces}.


Neural Algorithmic Reasoning with Causal Regularisation

arXiv.org Artificial Intelligence

Recent work on neural algorithmic reasoning has investigated the reasoning capabilities of neural networks, effectively demonstrating they can learn to execute classical algorithms on unseen data coming from the train distribution. However, the performance of existing neural reasoners significantly degrades on out-of-distribution (OOD) test data, where inputs have larger sizes. In this work, we make an important observation: there are many different inputs for which an algorithm will perform certain intermediate computations identically. This insight allows us to develop data augmentation procedures that, given an algorithm's intermediate trajectory, produce inputs for which the target algorithm would have exactly the same next trajectory step. We ensure invariance in the next-step prediction across such inputs, by employing a self-supervised objective derived by our observation, formalised in a causal graph. We prove that the resulting method, which we call Hint-ReLIC, improves the OOD generalisation capabilities of the reasoner. We evaluate our method on the CLRS algorithmic reasoning benchmark, where we show up to 3$\times$ improvements on the OOD test data.


Asynchronous Algorithmic Alignment with Cocycles

arXiv.org Artificial Intelligence

State-of-the-art neural algorithmic reasoners make use of message passing in graph neural networks (GNNs). But typical GNNs blur the distinction between the definition and invocation of the message function, forcing a node to send messages to its neighbours at every layer, synchronously. When applying GNNs to learn to execute dynamic programming algorithms, however, on most steps only a handful of the nodes would have meaningful updates to send. One, hence, runs the risk of inefficiencies by sending too much irrelevant data across the graph -- with many intermediate GNN steps having to learn identity functions. In this work, we explicitly separate the concepts of node state update and message function invocation. With this separation, we obtain a mathematical formulation that allows us to reason about asynchronous computation in both algorithms and neural networks.


Time-Warping Invariant Quantum Recurrent Neural Networks via Quantum-Classical Adaptive Gating

arXiv.org Artificial Intelligence

Adaptive gating plays a key role in temporal data processing via classical recurrent neural networks (RNN), as it facilitates retention of past information necessary to predict the future, providing a mechanism that preserves invariance to time warping transformations. This paper builds on quantum recurrent neural networks (QRNNs), a dynamic model with quantum memory, to introduce a novel class of temporal data processing quantum models that preserve invariance to time-warping transformations of the (classical) input-output sequences. The model, referred to as time warping-invariant QRNN (TWI-QRNN), augments a QRNN with a quantum-classical adaptive gating mechanism that chooses whether to apply a parameterized unitary transformation at each time step as a function of the past samples of the input sequence via a classical recurrent model. The TWI-QRNN model class is derived from first principles, and its capacity to successfully implement time-warping transformations is experimentally demonstrated on examples with classical or quantum dynamics.


Geometric Epitope and Paratope Prediction

arXiv.org Artificial Intelligence

Antibody-antigen interactions play a crucial role in identifying and neutralizing harmful foreign molecules. In this paper, we investigate the optimal representation for predicting the binding sites in the two molecules and emphasize the importance of geometric information. Specifically, we compare different geometric deep learning methods applied to proteins' inner (I-GEP) and outer (O-GEP) structures. We incorporate 3D coordinates and spectral geometric descriptors as input features to fully leverage the geometric information. Our research suggests that surface-based models are more efficient than other methods, and our O-GEP experiments have achieved state-of-the-art results with significant performance improvements.


Dual Algorithmic Reasoning

arXiv.org Artificial Intelligence

Neural Algorithmic Reasoning is an emerging area of machine learning which seeks to infuse algorithmic computation in neural networks, typically by training neural models to approximate steps of classical algorithms. In this context, much of the current work has focused on learning reachability and shortest path graph algorithms, showing that joint learning on similar algorithms is beneficial for generalisation. However, when targeting more complex problems, such similar algorithms become more difficult to find. Here, we propose to learn algorithms by exploiting duality of the underlying algorithmic problem. Many algorithms solve optimisation problems. We demonstrate that simultaneously learning the dual definition of these optimisation problems in algorithmic learning allows for better learning and qualitatively better solutions. Specifically, we exploit the max-flow min-cut theorem to simultaneously learn these two algorithms over synthetically generated graphs, demonstrating the effectiveness of the proposed approach. We then validate the real-world utility of our dual algorithmic reasoner by deploying it on a challenging brain vessel classification task, which likely depends on the vessels' flow properties. We demonstrate a clear performance gain when using our model within such a context, and empirically show that learning the max-flow and min-cut algorithms together is critical for achieving such a result.


Everything is Connected: Graph Neural Networks

arXiv.org Machine Learning

In many ways, graphs are the main modality of data we receive from nature. This is due to the fact that most of the patterns we see, both in natural and artificial systems, are elegantly representable using the language of graph structures. Prominent examples include molecules (represented as graphs of atoms and bonds), social networks and transportation networks. This potential has already been seen by key scientific and industrial groups, with already-impacted application areas including traffic forecasting, drug discovery, social network analysis and recommender systems. Further, some of the most successful domains of application for machine learning in previous years -- images, text and speech processing -- can be seen as special cases of graph representation learning, and consequently there has been significant exchange of information between these areas. The main aim of this short survey is to enable the reader to assimilate the key concepts in the area, and position graph representation learning in a proper context with related fields.


Learning Graph Search Heuristics

arXiv.org Artificial Intelligence

Searching for a path between two nodes in a graph is one of the most well-studied and fundamental problems in computer science. In numerous domains such as robotics, AI, or biology, practitioners develop search heuristics to accelerate their pathfinding algorithms. However, it is a laborious and complex process to hand-design heuristics based on the problem and the structure of a given use case. Here we present PHIL (Path Heuristic with Imitation Learning), a novel neural architecture and a training algorithm for discovering graph search and navigation heuristics from data by leveraging recent advances in imitation learning and graph representation learning. At training time, we aggregate datasets of search trajectories and ground-truth shortest path distances, which we use to train a specialized graph neural network-based heuristic function using backpropagation through steps of the pathfinding process. Our heuristic function learns graph embeddings useful for inferring node distances, runs in constant time independent of graph sizes, and can be easily incorporated in an algorithm such as A* at test time. Experiments show that PHIL reduces the number of explored nodes compared to state-of-the-art methods on benchmark datasets by 58.5\% on average, can be directly applied in diverse graphs ranging from biological networks to road networks, and allows for fast planning in time-critical robotics domains.