Vehtari, Aki
Nested Expectation Propagation for Gaussian Process Classification with a Multinomial Probit Likelihood
Riihimäki, Jaakko, Jylänki, Pasi, Vehtari, Aki
We consider probabilistic multinomial probit classification using Gaussian process (GP) priors. The challenges with the multiclass GP classification are the integration over the non-Gaussian posterior distribution, and the increase of the number of unknown latent variables as the number of target classes grows. Expectation propagation (EP) has proven to be a very accurate method for approximate inference but the existing EP approaches for the multinomial probit GP classification rely on numerical quadratures or independence assumptions between the latent values from different classes to facilitate the computations. In this paper, we propose a novel nested EP approach which does not require numerical quadratures, and approximates accurately all between-class posterior dependencies of the latent values, but still scales linearly in the number of classes. The predictive accuracy of the nested EP approach is compared to Laplace, variational Bayes, and Markov chain Monte Carlo (MCMC) approximations with various benchmark data sets. In the experiments nested EP was the most consistent method with respect to MCMC sampling, but the differences between the compared methods were small if only the classification accuracy is concerned.
Modelling local and global phenomena with sparse Gaussian processes
Vanhatalo, Jarno, Vehtari, Aki
Much recent work has concerned sparse approximations to speed up the Gaussian process regression from the unfavorable O(n3) scaling in computational time to O(nm2). Thus far, work has concentrated on models with one covariance function. However, in many practical situations additive models with multiple covariance functions may perform better, since the data may contain both long and short length-scale phenomena. The long length-scales can be captured with global sparse approximations, such as fully independent conditional (FIC), and the short length-scales can be modeled naturally by covariance functions with compact support (CS). CS covariance functions lead to naturally sparse covariance matrices, which are computationally cheaper to handle than full covariance matrices. In this paper, we propose a new sparse Gaussian process model with two additive components: FIC for the long length-scales and CS covariance function for the short length-scales. We give theoretical and experimental results and show that under certain conditions the proposed model has the same computational complexity as FIC. We also compare the model performance of the proposed model to additive models approximated by fully and partially independent conditional (PIC). We use real data sets and show that our model outperforms FIC and PIC approximations for data sets with two additive phenomena.
Speeding up the binary Gaussian process classification
Vanhatalo, Jarno, Vehtari, Aki
Gaussian processes (GP) are attractive building blocks for many probabilistic models. Their drawbacks, however, are the rapidly increasing inference time and memory requirement alongside increasing data. The problem can be alleviated with compactly supported (CS) covariance functions, which produce sparse covariance matrices that are fast in computations and cheap to store. CS functions have previously been used in GP regression but here the focus is in a classification problem. This brings new challenges since the posterior inference has to be done approximately. We utilize the expectation propagation algorithm and show how its standard implementation has to be modified to obtain computational benefits from the sparse covariance matrices. We study four CS covariance functions and show that they may lead to substantial speed up in the inference time compared to globally supported functions.
Gaussian Process Regression with a Student-t Likelihood
Jylänki, Pasi, Vanhatalo, Jarno, Vehtari, Aki
This paper considers the robust and efficient implementation of Gaussian process regression with a Student-t observation model. The challenge with the Student-t model is the analytically intractable inference which is why several approximative methods have been proposed. The expectation propagation (EP) has been found to be a very accurate method in many empirical studies but the convergence of the EP is known to be problematic with models containing non-log-concave site functions such as the Student-t distribution. In this paper we illustrate the situations where the standard EP fails to converge and review different modifications and alternative algorithms for improving the convergence. We demonstrate that convergence problems may occur during the type-II maximum a posteriori (MAP) estimation of the hyperparameters and show that the standard EP may not converge in the MAP values in some difficult cases. We present a robust implementation which relies primarily on parallel EP updates and utilizes a moment-matching-based double-loop algorithm with adaptively selected step size in difficult cases. The predictive performance of the EP is compared to the Laplace, variational Bayes, and Markov chain Monte Carlo approximations.
Gaussian process regression with Student-t likelihood
Vanhatalo, Jarno, Jylänki, Pasi, Vehtari, Aki
In the Gaussian process regression the observation model is commonly assumed to be Gaussian, which is convenient in computational perspective. However, the drawback is that the predictive accuracy of the model can be significantly compromised if the observations are contaminated by outliers. A robust observation model, such as the Student-t distribution, reduces the influence of outlying observations and improves the predictions. The problem, however, is the analytically intractable inference. In this work, we discuss the properties of a Gaussian process regression model with the Student-t likelihood and utilize the Laplace approximation for approximate inference. We compare our approach to a variational approximation and a Markov chain Monte Carlo scheme, which utilize the commonly used scale mixture representation of the Student-t distribution.