Not enough data to create a plot.
Try a different view from the menu above.
Veerabadran, Vijay
EgoToM: Benchmarking Theory of Mind Reasoning from Egocentric Videos
Li, Yuxuan, Veerabadran, Vijay, Iuzzolino, Michael L., Roads, Brett D., Celikyilmaz, Asli, Ridgeway, Karl
We introduce EgoToM, a new video question-answering benchmark that extends Theory-of-Mind (ToM) evaluation to egocentric domains. Using a causal ToM model, we generate multi-choice video QA instances for the Ego4D dataset to benchmark the ability to predict a camera wearer's goals, beliefs, and next actions. We study the performance of both humans and state of the art multimodal large language models (MLLMs) on these three interconnected inference problems. Our evaluation shows that MLLMs achieve close to human-level accuracy on inferring goals from egocentric videos. However, MLLMs (including the largest ones we tested with over 100B parameters) fall short of human performance when inferring the camera wearers' in-the-moment belief states and future actions that are most consistent with the unseen video future. We believe that our results will shape the future design of an important class of egocentric digital assistants which are equipped with a reasonable model of the user's internal mental states.
Adaptive recurrent vision performs zero-shot computation scaling to unseen difficulty levels
Veerabadran, Vijay, Ravishankar, Srinivas, Tang, Yuan, Raina, Ritik, de Sa, Virginia R.
Humans solving algorithmic (or) reasoning problems typically exhibit solution times that grow as a function of problem difficulty. Adaptive recurrent neural networks have been shown to exhibit this property for various language-processing tasks. However, little work has been performed to assess whether such adaptive computation can also enable vision models to extrapolate solutions beyond their training distribution's difficulty level, with prior work focusing on very simple tasks. In this study, we investigate a critical functional role of such adaptive processing using recurrent neural networks: to dynamically scale computational resources conditional on input requirements that allow for zero-shot generalization to novel difficulty levels not seen during training using two challenging visual reasoning tasks: PathFinder and Mazes. We combine convolutional recurrent neural networks (ConvRNNs) with a learnable halting mechanism based on Graves (2016). We explore various implementations of such adaptive ConvRNNs (AdRNNs) ranging from tying weights across layers to more sophisticated biologically inspired recurrent networks that possess lateral connections and gating. We show that 1) AdRNNs learn to dynamically halt processing early (or late) to solve easier (or harder) problems, 2) these RNNs zero-shot generalize to more difficult problem settings not shown during training by dynamically increasing the number of recurrent iterations at test time. Our study provides modeling evidence supporting the hypothesis that recurrent processing enables the functional advantage of adaptively allocating compute resources conditional on input requirements and hence allowing generalization to harder difficulty levels of a visual reasoning problem without training.
Learning long-range spatial dependencies with horizontal gated recurrent units
Linsley, Drew, Kim, Junkyung, Veerabadran, Vijay, Windolf, Charles, Serre, Thomas
Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching -- and sometimes even surpassing -- human accuracy on a variety of visual recognition tasks. Here, however, we show that these neural networks and their recent extensions struggle in recognition tasks where co-dependent visual features must be detected over long spatial ranges. We introduce a visual challenge, Pathfinder, and describe a novel recurrent neural network architecture called the horizontal gated recurrent unit (hGRU) to learn intrinsic horizontal connections -- both within and across feature columns. We demonstrate that a single hGRU layer matches or outperforms all tested feedforward hierarchical baselines including state-of-the-art architectures with orders of magnitude more parameters.
Learning long-range spatial dependencies with horizontal gated recurrent units
Linsley, Drew, Kim, Junkyung, Veerabadran, Vijay, Windolf, Charles, Serre, Thomas
Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching -- and sometimes even surpassing -- human accuracy on a variety of visual recognition tasks. Here, however, we show that these neural networks and their recent extensions struggle in recognition tasks where co-dependent visual features must be detected over long spatial ranges. We introduce a visual challenge, Pathfinder, and describe a novel recurrent neural network architecture called the horizontal gated recurrent unit (hGRU) to learn intrinsic horizontal connections -- both within and across feature columns. We demonstrate that a single hGRU layer matches or outperforms all tested feedforward hierarchical baselines including state-of-the-art architectures with orders of magnitude more parameters.