Goto

Collaborating Authors

 Vazquez-Chanlatte, Marcell


Interpretable Classification of Time-Series Data using Efficient Enumerative Techniques

arXiv.org Machine Learning

Cyber-physical system applications such as autonomous vehicles, wearable devices, and avionic systems generate a large volume of time-series data. Designers often look for tools to help classify and categorize the data. Traditional machine learning techniques for time-series data offer several solutions to solve these problems; however, the artifacts trained by these algorithms often lack interpretability. On the other hand, temporal logics, such as Signal Temporal Logic (STL) have been successfully used in the formal methods community as specifications of time-series behaviors. In this work, we propose a new technique to automatically learn temporal logic formulae that are able to cluster and classify real-valued time-series data. Previous work on learning STL formulas from data either assumes a formula-template to be given by the user, or assumes some special fragment of STL that enables exploring the formula structure in a systematic fashion. In our technique, we relax these assumptions, and provide a way to systematically explore the space of all STL formulas. As the space of all STL formulas is very large, and contains many semantically equivalent formulas, we suggest a technique to heuristically prune the space of formulas considered. Finally, we illustrate our technique on various case studies from the automotive, transportation and healthcare domain.


A Model Counter's Guide to Probabilistic Systems

arXiv.org Artificial Intelligence

Starting from unbiased coin flips, we show how to model biased coins, correlated coins, and distributions over finite sets. From there, we continue with modeling sequential systems, such as Markov chains, and revisit the relationship between weighted and unweighted model counting. Thereby, this work provides a conceptual framework for deriving #SAT encodings for probabilistic inference.


VERIFAI: A Toolkit for the Design and Analysis of Artificial Intelligence-Based Systems

arXiv.org Artificial Intelligence

We present VERIFAI, a software toolkit for the formal design and analysis of systems that include artificial intelligence (AI) and machine learning (ML) components. VERIFAI particularly seeks to address challenges with applying formal methods to perception and ML components, including those based on neural networks, and to model and analyze system behavior in the presence of environment uncertainty. We describe the initial version of VERIFAI which centers on simulation guided by formal models and specifications. Several use cases are illustrated with examples, including temporal-logic falsification, model-based systematic fuzz testing, parameter synthesis, counterexample analysis, and data set augmentation.


Learning Task Specifications from Demonstrations

Neural Information Processing Systems

In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.


Learning Task Specifications from Demonstrations

Neural Information Processing Systems

In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.


Specification Inference from Demonstrations

arXiv.org Artificial Intelligence

Learning from expert demonstrations has received a lot of attention in artificial intelligence and machine learning. The goal is to infer the underlying reward function that an agent is optimizing given a set of observations of the agent's behavior over time in a variety of circumstances, the system state trajectories, and a plant model specifying the evolution of the system state for different agent's actions. The system is often modeled as a Markov decision process, that is, the next state depends only on the current state and agent's action, and the the agent's choice of action depends only on the current state. While the former is a Markovian assumption on the evolution of system state, the later assumes that the target reward function is itself Markovian. In this work, we explore learning a class of non-Markovian reward functions, known in the formal methods literature as specifications. These specifications offer better composition, transferability, and interpretability. We then show that inferring the specification can be done efficiently without unrolling the transition system. We demonstrate on a 2-d grid world example.