Goto

Collaborating Authors

 Vasco, Miguel


GMC -- Geometric Multimodal Contrastive Representation Learning

arXiv.org Artificial Intelligence

Learning representations of multimodal data that are both informative and robust to missing modalities at test time remains a challenging problem due to the inherent heterogeneity of data obtained from different channels. To address it, we present a novel Geometric Multimodal Contrastive (GMC) representation learning method comprised of two main components: i) a two-level architecture consisting of modality-specific base encoder, allowing to process an arbitrary number of modalities to an intermediate representation of fixed dimensionality, and a shared projection head, mapping the intermediate representations to a latent representation space; ii) a multimodal contrastive loss function that encourages the geometric alignment of the learned representations. We experimentally demonstrate that GMC representations are semantically rich and achieve state-of-the-art performance with missing modality information on three different learning problems including prediction and reinforcement learning tasks.


How to Sense the World: Leveraging Hierarchy in Multimodal Perception for Robust Reinforcement Learning Agents

arXiv.org Artificial Intelligence

This work addresses the problem of sensing the world: how to learn a multimodal representation of a reinforcement learning agent's environment that allows the execution of tasks under incomplete perceptual conditions. To address such problem, we argue for hierarchy in the design of representation models and contribute with a novel multimodal representation model, MUSE. The proposed model learns hierarchical representations: low-level modality-specific representations, encoded from raw observation data, and a high-level multimodal representation, encoding joint-modality information to allow robust state estimation. We employ MUSE as the sensory representation model of deep reinforcement learning agents provided with multimodal observations in Atari games. We perform a comparative study over different designs of reinforcement learning agents, showing that MUSE allows agents to perform tasks under incomplete perceptual experience with minimal performance loss. Finally, we evaluate the performance of MUSE in literature-standard multimodal scenarios with higher number and more complex modalities, showing that it outperforms state-of-the-art multimodal variational autoencoders in single and cross-modality generation.


MHVAE: a Human-Inspired Deep Hierarchical Generative Model for Multimodal Representation Learning

arXiv.org Machine Learning

Humans are able to create rich representations of their external reality. Their internal representations allow for cross-modality inference, where available perceptions can induce the perceptual experience of missing input modalities. In this paper, we contribute the Multimodal Hierarchical Variational Auto-encoder (MHVAE), a hierarchical multimodal generative model for representation learning. Inspired by human cognitive models, the MHVAE is able to learn modality-specific distributions, of an arbitrary number of modalities, and a joint-modality distribution, responsible for cross-modality inference. We formally derive the model's evidence lower bound and propose a novel methodology to approximate the joint-modality posterior based on modality-specific representation dropout. We evaluate the MHVAE on standard multimodal datasets. Our model performs on par with other state-of-the-art generative models regarding joint-modality reconstruction from arbitrary input modalities and cross-modality inference.


Learning multimodal representations for sample-efficient recognition of human actions

arXiv.org Artificial Intelligence

Humans interact in rich and diverse ways with the environment. However, the representation of such behavior by artificial agents is often limited. In this work we present \textit{motion concepts}, a novel multimodal representation of human actions in a household environment. A motion concept encompasses a probabilistic description of the kinematics of the action along with its contextual background, namely the location and the objects held during the performance. Furthermore, we present Online Motion Concept Learning (OMCL), a new algorithm which learns novel motion concepts from action demonstrations and recognizes previously learned motion concepts. The algorithm is evaluated on a virtual-reality household environment with the presence of a human avatar. OMCL outperforms standard motion recognition algorithms on an one-shot recognition task, attesting to its potential for sample-efficient recognition of human actions.