Goto

Collaborating Authors

 Varma, Maya


Toward expanding the scope of radiology report summarization to multiple anatomies and modalities

arXiv.org Artificial Intelligence

Radiology report summarization (RRS) is a growing area of research. Given the Findings section of a radiology report, the goal is to generate a summary (called an Impression section) that highlights the key observations and conclusions of the radiology study. However, RRS currently faces essential limitations.First, many prior studies conduct experiments on private datasets, preventing reproduction of results and fair comparisons across different systems and solutions. Second, most prior approaches are evaluated solely on chest X-rays. To address these limitations, we propose a dataset (MIMIC-RRS) involving three new modalities and seven new anatomies based on the MIMIC-III and MIMIC-CXR datasets. We then conduct extensive experiments to evaluate the performance of models both within and across modality-anatomy pairs in MIMIC-RRS. In addition, we evaluate their clinical efficacy via RadGraph, a factual correctness metric.


Cross-Domain Data Integration for Named Entity Disambiguation in Biomedical Text

arXiv.org Artificial Intelligence

Named entity disambiguation (NED), which involves mapping textual mentions to structured entities, is particularly challenging in the medical domain due to the presence of rare entities. Existing approaches are limited by the presence of coarse-grained structural resources in biomedical knowledge bases as well as the use of training datasets that provide low coverage over uncommon resources. In this work, we address these issues by proposing a cross-domain data integration method that transfers structural knowledge from a general text knowledge base to the medical domain. We utilize our integration scheme to augment structural resources and generate a large biomedical NED dataset for pretraining. Our pretrained model with injected structural knowledge achieves state-of-the-art performance on two benchmark medical NED datasets: MedMentions and BC5CDR. Furthermore, we improve disambiguation of rare entities by up to 57 accuracy points.


Determining Question-Answer Plausibility in Crowdsourced Datasets Using Multi-Task Learning

arXiv.org Artificial Intelligence

Datasets extracted from social networks and online forums are often prone to the pitfalls of natural language, namely the presence of unstructured and noisy data. In this work, we seek to enable the collection of high-quality question-answer datasets from social media by proposing a novel task for automated quality analysis and data cleaning: question-answer (QA) plausibility. Given a machine or user-generated question and a crowd-sourced response from a social media user, we determine if the question and response are valid; if so, we identify the answer within the free-form response. We design BERT-based models to perform the QA plausibility task, and we evaluate the ability of our models to generate a clean, usable question-answer dataset. Our highest-performing approach consists of a single-task model which determines the plausibility of the question, followed by a multi-task model which evaluates the plausibility of the response as well as extracts answers (Question Plausibility AUROC=0.75, Response Plausibility AUROC=0.78, Answer Extraction F1=0.665).