Not enough data to create a plot.
Try a different view from the menu above.
Varghese, Jibin Rajan
AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons
Ghosh, Shaona, Frase, Heather, Williams, Adina, Luger, Sarah, Röttger, Paul, Barez, Fazl, McGregor, Sean, Fricklas, Kenneth, Kumar, Mala, Feuillade--Montixi, Quentin, Bollacker, Kurt, Friedrich, Felix, Tsang, Ryan, Vidgen, Bertie, Parrish, Alicia, Knotz, Chris, Presani, Eleonora, Bennion, Jonathan, Boston, Marisa Ferrara, Kuniavsky, Mike, Hutiri, Wiebke, Ezick, James, Salem, Malek Ben, Sahay, Rajat, Goswami, Sujata, Gohar, Usman, Huang, Ben, Sarin, Supheakmungkol, Alhajjar, Elie, Chen, Canyu, Eng, Roman, Manjusha, Kashyap Ramanandula, Mehta, Virendra, Long, Eileen, Emani, Murali, Vidra, Natan, Rukundo, Benjamin, Shahbazi, Abolfazl, Chen, Kongtao, Ghosh, Rajat, Thangarasa, Vithursan, Peigné, Pierre, Singh, Abhinav, Bartolo, Max, Krishna, Satyapriya, Akhtar, Mubashara, Gold, Rafael, Coleman, Cody, Oala, Luis, Tashev, Vassil, Imperial, Joseph Marvin, Russ, Amy, Kunapuli, Sasidhar, Miailhe, Nicolas, Delaunay, Julien, Radharapu, Bhaktipriya, Shinde, Rajat, Tuesday, null, Dutta, Debojyoti, Grabb, Declan, Gangavarapu, Ananya, Sahay, Saurav, Gangavarapu, Agasthya, Schramowski, Patrick, Singam, Stephen, David, Tom, Han, Xudong, Mammen, Priyanka Mary, Prabhakar, Tarunima, Kovatchev, Venelin, Ahmed, Ahmed, Manyeki, Kelvin N., Madireddy, Sandeep, Khomh, Foutse, Zhdanov, Fedor, Baumann, Joachim, Vasan, Nina, Yang, Xianjun, Mougn, Carlos, Varghese, Jibin Rajan, Chinoy, Hussain, Jitendar, Seshakrishna, Maskey, Manil, Hardgrove, Claire V., Li, Tianhao, Gupta, Aakash, Joswin, Emil, Mai, Yifan, Kumar, Shachi H, Patlak, Cigdem, Lu, Kevin, Alessi, Vincent, Balija, Sree Bhargavi, Gu, Chenhe, Sullivan, Robert, Gealy, James, Lavrisa, Matt, Goel, James, Mattson, Peter, Liang, Percy, Vanschoren, Joaquin
The rapid advancement and deployment of AI systems have created an urgent need for standard safety-evaluation frameworks. This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability. Its development employed an open process that included participants from multiple fields. The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories, including violent crimes, nonviolent crimes, sex-related crimes, child sexual exploitation, indiscriminate weapons, suicide and self-harm, intellectual property, privacy, defamation, hate, sexual content, and specialized advice (election, financial, health, legal). Our method incorporates a complete assessment standard, extensive prompt datasets, a novel evaluation framework, a grading and reporting system, and the technical as well as organizational infrastructure for long-term support and evolution. In particular, the benchmark employs an understandable five-tier grading scale (Poor to Excellent) and incorporates an innovative entropy-based system-response evaluation. In addition to unveiling the benchmark, this report also identifies limitations of our method and of building safety benchmarks generally, including evaluator uncertainty and the constraints of single-turn interactions. This work represents a crucial step toward establishing global standards for AI risk and reliability evaluation while acknowledging the need for continued development in areas such as multiturn interactions, multimodal understanding, coverage of additional languages, and emerging hazard categories. Our findings provide valuable insights for model developers, system integrators, and policymakers working to promote safer AI deployment.
Aegis2.0: A Diverse AI Safety Dataset and Risks Taxonomy for Alignment of LLM Guardrails
Ghosh, Shaona, Varshney, Prasoon, Sreedhar, Makesh Narsimhan, Padmakumar, Aishwarya, Rebedea, Traian, Varghese, Jibin Rajan, Parisien, Christopher
As Large Language Models (LLMs) and generative AI become increasingly widespread, concerns about content safety have grown in parallel. Currently, there is a clear lack of high-quality, human-annotated datasets that address the full spectrum of LLM-related safety risks and are usable for commercial applications. To bridge this gap, we propose a comprehensive and adaptable taxonomy for categorizing safety risks, structured into 12 top-level hazard categories with an extension to 9 fine-grained subcategories. This taxonomy is designed to meet the diverse requirements of downstream users, offering more granular and flexible tools for managing various risk types. Using a hybrid data generation pipeline that combines human annotations with a multi-LLM "jury" system to assess the safety of responses, we obtain Aegis 2.0, a carefully curated collection of 34,248 samples of human-LLM interactions, annotated according to our proposed taxonomy. To validate its effectiveness, we demonstrate that several lightweight models, trained using parameter-efficient techniques on Aegis 2.0, achieve performance competitive with leading safety models fully fine-tuned on much larger, non-commercial datasets. In addition, we introduce a novel training blend that combines safety with topic following data.This approach enhances the adaptability of guard models, enabling them to generalize to new risk categories defined during inference. We plan to open-source Aegis 2.0 data and models to the research community to aid in the safety guardrailing of LLMs.