Plotting

 Van Roy, Maaike


A Markov Framework for Learning and Reasoning About Strategies in Professional Soccer

Journal of Artificial Intelligence Research

Strategy-optimization is a fundamental element of dynamic and complex team sports such as soccer, American football, and basketball. As the amount of data that is collected from matches in these sports has increased, so has the demand for data-driven decisionmaking support. If alternative strategies need to be balanced, a data-driven approach can uncover insights that are not available from qualitative analysis. This could tremendously aid teams in their match preparations. In this work, we propose a novel Markov modelbased framework for soccer that allows reasoning about the specific strategies teams use in order to gain insights into the efficiency of each strategy. The framework consists of two components: (1) a learning component, which entails modeling a team’s offensive behavior by learning a Markov decision process (MDP) from event data that is collected from the team’s matches, and (2) a reasoning component, which involves a novel application of probabilistic model checking to reason about the efficacy of the learned strategies of each team. In this paper, we provide an overview of this framework and illustrate it on several use cases using real-world event data from three leagues. Our results show that the framework can be used to reason about the shot decision-making of teams and to optimise the defensive strategies used when playing against a particular team. The general ideas presented in this framework can easily be extended to other sports.


Leaving Goals on the Pitch: Evaluating Decision Making in Soccer

arXiv.org Artificial Intelligence

Analysis of the popular expected goals (xG) metric in soccer has determined that a (slightly) smaller number of high-quality attempts will likely yield more goals than a slew of low-quality ones. This observation has driven a change in shooting behavior. Teams are passing up on shots from outside the penalty box, in the hopes of generating a better shot closer to goal later on. This paper evaluates whether this decrease in long-distance shots is warranted. Therefore, we propose a novel generic framework to reason about decision-making in soccer by combining techniques from machine learning and artificial intelligence (AI). First, we model how a team has behaved offensively over the course of two seasons by learning a Markov Decision Process (MDP) from event stream data. Second, we use reasoning techniques arising from the AI literature on verification to each team's MDP. This allows us to reason about the efficacy of certain potential decisions by posing counterfactual questions to the MDP. Our key conclusion is that teams would score more goals if they shot more often from outside the penalty box in a small number of team-specific locations. The proposed framework can easily be extended and applied to analyze other aspects of the game.