Van Roy, Benjamin
A Hybrid Method for Distance Metric Learning
Kao, Yi-Hao, Van Roy, Benjamin, Rubin, Daniel, Xu, Jiajing, Faruque, Jessica, Napel, Sandy
We consider the problem of learning a measure of distance among vectors in a feature space and propose a hybrid method that simultaneously learns from similarity ratings assigned to pairs of vectors and class labels assigned to individual vectors. Our method is based on a generative model in which class labels can provide information that is not encoded in feature vectors but yet relates to perceived similarity between objects. Experiments with synthetic data as well as a real medical image retrieval problem demonstrate that leveraging class labels through use of our method improves retrieval performance significantly.
Directed Time Series Regression for Control
Kao, Yi-Hao, Van Roy, Benjamin
We propose directed time series regression, a new approach to estimating parameters of time-series models for use in certainty equivalent model predictive control. The approach combines merits of least squares regression and empirical optimization. Through a computational study involving a stochastic version of a well known inverted pendulum balancing problem, we demonstrate that directed time series regression can generate significant improvements in controller performance over either of the aforementioned alternatives.
Consensus Propagation
Moallemi, Ciamac C., Van Roy, Benjamin
We propose consensus propagation, an asynchronous distributed protocol for averaging numbers across a network. We establish convergence, characterize the convergence rate for regular graphs, and demonstrate that the protocol exhibits better scaling properties than pairwise averaging, an alternative that has received much recent attention. Consensus propagation can be viewed as a special case of belief propagation, and our results contribute to the belief propagation literature. In particular, beyond singly-connected graphs, there are very few classes of relevant problems for which belief propagation is known to converge.