Goto

Collaborating Authors

 Van Hentenryck, Pascal


Dual Interior-Point Optimization Learning

arXiv.org Artificial Intelligence

This paper introduces Dual Interior Point Learning (DIPL) and Dual Supergradient Learning (DSL) to learn dual feasible solutions to parametric linear programs with bounded variables, which are pervasive across many industries. DIPL mimics a novel dual interior point algorithm while DSL mimics classical dual supergradient ascent. DIPL and DSL ensure dual feasibility by predicting dual variables associated with the constraints then exploiting the flexibility of the duals of the bound constraints. DIPL and DSL complement existing primal learning methods by providing a certificate of quality. They are shown to produce high-fidelity dual-feasible solutions to large-scale optimal power flow problems providing valid dual bounds under 0.5% optimality gap.


Boosting Column Generation with Graph Neural Networks for Joint Rider Trip Planning and Crew Shift Scheduling

arXiv.org Artificial Intelligence

Optimizing service schedules is pivotal to the reliable, efficient, and inclusive on-demand mobility. This pressing challenge is further exacerbated by the increasing needs of an aging population, the over-subscription of existing services, and the lack of effective solution methods. This study addresses the intricacies of service scheduling, by jointly optimizing rider trip planning and crew scheduling for a complex dynamic mobility service. The resulting optimization problems are extremely challenging computationally for state-of-the-art methods. To address this fundamental gap, this paper introduces the Joint Rider Trip Planning and Crew Shift Scheduling Problem (JRTPCSSP) and a novel solution method, called AGGNNI-CG (Attention and Gated GNN- Informed Column Generation), that hybridizes column generation and machine learning to obtain near-optimal solutions to the JRTPCSSP with the real-time constraints of the application. The key idea of the machine-learning component is to dramatically reduce the number of paths to explore in the pricing component, accelerating the most time-consuming component of the column generation. The machine learning component is a graph neural network with an attention mechanism and a gated architecture, that is particularly suited to cater for the different input sizes coming from daily operations. AGGNNI-CG has been applied to a challenging, real-world dataset from the Paratransit system of Chatham County in Georgia. It produces dramatic improvements compared to the baseline column generation approach, which typically cannot produce feasible solutions in reasonable time on both medium-sized and large-scale complex instances. AGGNNI-CG also produces significant improvements in service compared to the existing system.


Self-Supervised Learning for Large-Scale Preventive Security Constrained DC Optimal Power Flow

arXiv.org Artificial Intelligence

Security-Constrained Optimal Power Flow (SCOPF) plays a crucial role in power grid stability but becomes increasingly complex as systems grow. This paper introduces PDL-SCOPF, a self-supervised end-to-end primal-dual learning framework for producing near-optimal solutions to large-scale SCOPF problems in milliseconds. Indeed, PDL-SCOPF remedies the limitations of supervised counterparts that rely on training instances with their optimal solutions, which becomes impractical for large-scale SCOPF problems. PDL-SCOPF mimics an Augmented Lagrangian Method (ALM) for training primal and dual networks that learn the primal solutions and the Lagrangian multipliers, respectively, to the unconstrained optimizations. In addition, PDL-SCOPF incorporates a repair layer to ensure the feasibility of the power balance in the nominal case, and a binary search layer to compute, using the Automatic Primary Response (APR), the generator dispatches in the contingencies. The resulting differentiable program can then be trained end-to-end using the objective function of the SCOPF and the power balance constraints of the contingencies. Experimental results demonstrate that the PDL-SCOPF delivers accurate feasible solutions with minimal optimality gaps. The framework underlying PDL-SCOPF aims at bridging the gap between traditional optimization methods and machine learning, highlighting the potential of self-supervised end-to-end primal-dual learning for large-scale optimization tasks.


Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and Optimization

arXiv.org Artificial Intelligence

Many real-world decision processes are modeled by optimization problems whose defining parameters are unknown and must be inferred from observable data. The Predict-Then-Optimize framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving. Recent works show that decision quality can be improved in this setting by solving and differentiating the optimization problem in the training loop, enabling end-to-end training with loss functions defined directly on the resulting decisions. However, this approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step. This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models. The approach is generic, and based on an adaptation of the Learning-to-Optimize paradigm, from which a rich variety of existing techniques can be employed. Experimental evaluations show the ability of several Learning-to-Optimize methods to provide efficient, accurate, and flexible solutions to an array of challenging Predict-Then-Optimize problems.


Learning Optimal Power Flow Value Functions with Input-Convex Neural Networks

arXiv.org Artificial Intelligence

The Optimal Power Flow (OPF) problem is integral to the functioning of power systems, aiming to optimize generation dispatch while adhering to technical and operational constraints. These constraints are far from straightforward; they involve intricate, non-convex considerations related to Alternating Current (AC) power flow, which are essential for the safety and practicality of electrical grids. However, solving the OPF problem for varying conditions within stringent time frames poses practical challenges. To address this, operators resort to model simplifications of varying accuracy. Unfortunately, better approximations (tight convex relaxations) are often computationally intractable. This research explores machine learning (ML) to learn convex approximate solutions for faster analysis in the online setting while still allowing for coupling into other convex dependent decision problems. By trading off a small amount of accuracy for substantial gains in speed, they enable the efficient exploration of vast solution spaces in these complex problems.


Dual Conic Proxies for AC Optimal Power Flow

arXiv.org Artificial Intelligence

In recent years, there has been significant interest in the development of machine learning-based optimization proxies for AC Optimal Power Flow (AC-OPF). Although significant progress has been achieved in predicting high-quality primal solutions, no existing learning-based approach can provide valid dual bounds for AC-OPF. This paper addresses this gap by training optimization proxies for a convex relaxation of AC-OPF. Namely, the paper considers a second-order cone (SOC) relaxation of ACOPF, and proposes a novel dual architecture that embeds a fast, differentiable (dual) feasibility recovery, thus providing valid dual bounds. The paper combines this new architecture with a self-supervised learning scheme, which alleviates the need for costly training data generation. Extensive numerical experiments on medium- and large-scale power grids demonstrate the efficiency and scalability of the proposed methodology.


Bucketized Active Sampling for Learning ACOPF

arXiv.org Artificial Intelligence

This paper considers optimization proxies for Optimal Power Flow (OPF), i.e., machine-learning models that approximate the input/output relationship of OPF. Recent work has focused on showing that such proxies can be of high fidelity. However, their training requires significant data, each instance necessitating the (offline) solving of an OPF for a sample of the input distribution. To meet the requirements of market-clearing applications, this paper proposes Bucketized Active Sampling (BAS), a novel active learning framework that aims at training the best possible OPF proxy within a time limit. BAS partitions the input distribution into buckets and uses an acquisition function to determine where to sample next. By applying the same partitioning to the validation set, BAS leverages labeled validation samples in the selection of unlabeled samples. BAS also relies on an adaptive learning rate that increases and decreases over time. Experimental results demonstrate the benefits of BAS.


Asset Bundling for Wind Power Forecasting

arXiv.org Machine Learning

The growing penetration of intermittent, renewable generation in US power grids, especially wind and solar generation, results in increased operational uncertainty. In that context, accurate forecasts are critical, especially for wind generation, which exhibits large variability and is historically harder to predict. To overcome this challenge, this work proposes a novel Bundle-Predict-Reconcile (BPR) framework that integrates asset bundling, machine learning, and forecast reconciliation techniques. The BPR framework first learns an intermediate hierarchy level (the bundles), then predicts wind power at the asset, bundle, and fleet level, and finally reconciles all forecasts to ensure consistency. This approach effectively introduces an auxiliary learning task (predicting the bundle-level time series) to help the main learning tasks. The paper also introduces new asset-bundling criteria that capture the spatio-temporal dynamics of wind power time series. Extensive numerical experiments are conducted on an industry-size dataset of 283 wind farms in the MISO footprint. The experiments consider short-term and day-ahead forecasts, and evaluates a large variety of forecasting models that include weather predictions as covariates. The results demonstrate the benefits of BPR, which consistently and significantly improves forecast accuracy over baselines, especially at the fleet level.


Modern Constraint Programming Education: Lessons for the Future

arXiv.org Artificial Intelligence

A general overview of current CP courses and instructional methods is presented, with a focus on online and virtually-delivered courses. This is followed by a discussion of the novel approach taken to introductory CP education for engineering students at large scale at the Georgia Institute of Technology (Georgia Tech) in Atlanta, GA, USA. The paper summarizes important takeaways from the Georgia Tech CP course and ends with a discussion on the future of CP education. Some ideas for instructional methods, promotional methods, and organizational changes are proposed to aid in the long-term growth of CP education.


End-to-End Feasible Optimization Proxies for Large-Scale Economic Dispatch

arXiv.org Artificial Intelligence

The paper proposes a novel End-to-End Learning and Repair (E2ELR) architecture for training optimization proxies for economic dispatch problems. E2ELR combines deep neural networks with closed-form, differentiable repair layers, thereby integrating learning and feasibility in an end-to-end fashion. E2ELR is also trained with self-supervised learning, removing the need for labeled data and the solving of numerous optimization problems offline. E2ELR is evaluated on industry-size power grids with tens of thousands of buses using an economic dispatch that co-optimizes energy and reserves. The results demonstrate that the self-supervised E2ELR achieves state-of-the-art performance, with optimality gaps that outperform other baselines by at least an order of magnitude.