Van Gool, Luc
Optimal transport maps for distribution preserving operations on latent spaces of Generative Models
Agustsson, Eirikur, Sage, Alexander, Timofte, Radu, Van Gool, Luc
Generative models such as Variational Auto Encoders (VAEs) and Generative Adversarial Networks (GANs) are typically trained for a fixed prior distribution in the latent space, such as uniform or Gaussian. After a trained model is obtained, one can sample the Generator in various forms for exploration and understanding, such as interpolating between two samples, sampling in the vicinity of a sample or exploring differences between a pair of samples applied to a third sample. In this paper, we show that the latent space operations used in the literature so far induce a distribution mismatch between the resulting outputs and the prior distribution the model was trained on. To address this, we propose to use distribution matching transport maps to ensure that such latent space operations preserve the prior distribution, while minimally modifying the original operation. Our experimental results validate that the proposed operations give higher quality samples compared to the original operations.
Logo Synthesis and Manipulation with Clustered Generative Adversarial Networks
Sage, Alexander, Agustsson, Eirikur, Timofte, Radu, Van Gool, Luc
Designing a logo for a new brand is a lengthy and tedious back-and-forth process between a designer and a client. In this paper we explore to what extent machine learning can solve the creative task of the designer. For this, we build a dataset -- LLD -- of 600k+ logos crawled from the world wide web. Training Generative Adversarial Networks (GANs) for logo synthesis on such multi-modal data is not straightforward and results in mode collapse for some state-of-the-art methods. We propose the use of synthetic labels obtained through clustering to disentangle and stabilize GAN training. We are able to generate a high diversity of plausible logos and we demonstrate latent space exploration techniques to ease the logo design task in an interactive manner. Moreover, we validate the proposed clustered GAN training on CIFAR 10, achieving state-of-the-art Inception scores when using synthetic labels obtained via clustering the features of an ImageNet classifier. GANs can cope with multi-modal data by means of synthetic labels achieved through clustering, and our results show the creative potential of such techniques for logo synthesis and manipulation. Our dataset and models will be made publicly available at https://data.vision.ee.ethz.ch/cvl/lld/.
Manifold-valued Image Generation with Wasserstein Adversarial Networks
Huang, Zhiwu, Wu, Jiqing, Van Gool, Luc
Unsupervised image generation has recently received an increasing amount of attention thanks to the great success of generative adversarial networks (GANs), particularly Wasserstein GANs. Inspired by the paradigm of real-valued image generation, this paper makes the first attempt to formulate the problem of generating manifold-valued images, which are frequently encountered in real-world applications. For the study, we specially exploit three typical manifold-valued image generation tasks: hue-saturation-value (HSV) color image generation, chromaticity-brightness (CB) color image generation, and diffusion-tensor (DT) image generation. In order to produce such kinds of images as realistic as possible, we generalize the state-of-the-art technique of Wasserstein GANs to the manifold context with exploiting Riemannian geometry. For the proposed manifold-valued image generation problem, we recommend three benchmark datasets that are CIFAR-10 HSV/CB color images, ImageNet HSV/CB color images, UCL DT image datasets. On the three datasets, we experimentally demonstrate the proposed manifold-aware Wasserestein GAN can generate high quality manifold-valued images.
Acquiring Common Sense Spatial Knowledge through Implicit Spatial Templates
Collell, Guillem, Van Gool, Luc, Moens, Marie-Francine
Spatial understanding is a fundamental problem with wide-reaching real-world applications. The representation of spatial knowledge is often modeled with spatial templates, i.e., regions of acceptability of two objects under an explicit spatial relationship (e.g., "on", "below", etc.). In contrast with prior work that restricts spatial templates to explicit spatial prepositions (e.g., "glass on table"), here we extend this concept to implicit spatial language, i.e., those relationships (generally actions) for which the spatial arrangement of the objects is only implicitly implied (e.g., "man riding horse"). In contrast with explicit relationships, predicting spatial arrangements from implicit spatial language requires significant common sense spatial understanding. Here, we introduce the task of predicting spatial templates for two objects under a relationship, which can be seen as a spatial question-answering task with a (2D) continuous output ("where is the man w.r.t. a horse when the man is walking the horse?"). We present two simple neural-based models that leverage annotated images and structured text to learn this task. The good performance of these models reveals that spatial locations are to a large extent predictable from implicit spatial language. Crucially, the models attain similar performance in a challenging generalized setting, where the object-relation-object combinations (e.g.,"man walking dog") have never been seen before. Next, we go one step further by presenting the models with unseen objects (e.g., "dog"). In this scenario, we show that leveraging word embeddings enables the models to output accurate spatial predictions, proving that the models acquire solid common sense spatial knowledge allowing for such generalization.
Random Binary Mappings for Kernel Learning and Efficient SVM
Roig, Gemma, Boix, Xavier, Van Gool, Luc
Support Vector Machines (SVMs) are powerful learners that have led to state-of-the-art results in various computer vision problems. SVMs suffer from various drawbacks in terms of selecting the right kernel, which depends on the image descriptors, as well as computational and memory efficiency. This paper introduces a novel kernel, which serves such issues well. The kernel is learned by exploiting a large amount of low-complex, randomized binary mappings of the input feature. This leads to an efficient SVM, while also alleviating the task of kernel selection. We demonstrate the capabilities of our kernel on 6 standard vision benchmarks, in which we combine several common image descriptors, namely histograms (Flowers17 and Daimler), attribute-like descriptors (UCI, OSR, and a-VOC08), and Sparse Quantization (ImageNet). Results show that our kernel learning adapts well to the different descriptors types, achieving the performance of the kernels specifically tuned for each image descriptor, and with similar evaluation cost as efficient SVM methods.