Not enough data to create a plot.
Try a different view from the menu above.
Van Gool, Luc
Self-Explainable Affordance Learning with Embodied Caption
Zhang, Zhipeng, Wei, Zhimin, Sun, Guolei, Wang, Peng, Van Gool, Luc
In the field of visual affordance learning, previous methods mainly used abundant images or videos that delineate human behavior patterns to identify action possibility regions for object manipulation, with a variety of applications in robotic tasks. However, they encounter a main challenge of action ambiguity, illustrated by the vagueness like whether to beat or carry a drum, and the complexities involved in processing intricate scenes. Moreover, it is important for human intervention to rectify robot errors in time. To address these issues, we introduce Self-Explainable Affordance learning (SEA) with embodied caption. This innovation enables robots to articulate their intentions and bridge the gap between explainable vision-language caption and visual affordance learning. Due to a lack of appropriate dataset, we unveil a pioneering dataset and metrics tailored for this task, which integrates images, heatmaps, and embodied captions. Furthermore, we propose a novel model to effectively combine affordance grounding with self-explanation in a simple but efficient manner. Extensive quantitative and qualitative experiments demonstrate our method's effectiveness.
Investigating the Effectiveness of Cross-Attention to Unlock Zero-Shot Editing of Text-to-Video Diffusion Models
Motamed, Saman, Van Gansbeke, Wouter, Van Gool, Luc
With recent advances in image and video diffusion models for content creation, a plethora of techniques have been proposed for customizing their generated content. In particular, manipulating the cross-attention layers of Text-to-Image (T2I) diffusion models has shown great promise in controlling the shape and location of objects in the scene. Transferring image-editing techniques to the video domain, however, is extremely challenging as object motion and temporal consistency are difficult to capture accurately. In this work, we take a first look at the role of cross-attention in Text-to-Video (T2V) diffusion models for zero-shot video editing. While one-shot models have shown potential in controlling motion and camera movement, we demonstrate zero-shot control over object shape, position and movement in T2V models. We show that despite the limitations of current T2V models, cross-attention guidance can be a promising approach for editing videos.
Language-Guided Instance-Aware Domain-Adaptive Panoptic Segmentation
Mansour, Elham Amin, Unal, Ozan, Saha, Suman, Bejar, Benjamin, Van Gool, Luc
The increasing relevance of panoptic segmentation is tied to the advancements in autonomous driving and AR/VR applications. However, the deployment of such models has been limited due to the expensive nature of dense data annotation, giving rise to unsupervised domain adaptation (UDA). A key challenge in panoptic UDA is reducing the domain gap between a labeled source and an unlabeled target domain while harmonizing the subtasks of semantic and instance segmentation to limit catastrophic interference. While considerable progress has been achieved, existing approaches mainly focus on the adaptation of semantic segmentation. In this work, we focus on incorporating instance-level adaptation via a novel instance-aware cross-domain mixing strategy IMix. IMix significantly enhances the panoptic quality by improving instance segmentation performance. Specifically, we propose inserting high-confidence predicted instances from the target domain onto source images, retaining the exhaustiveness of the resulting pseudo-labels while reducing the injected confirmation bias. Nevertheless, such an enhancement comes at the cost of degraded semantic performance, attributed to catastrophic forgetting. To mitigate this issue, we regularize our semantic branch by employing CLIP-based domain alignment (CDA), exploiting the domain-robustness of natural language prompts. Finally, we present an end-to-end model incorporating these two mechanisms called LIDAPS, achieving state-of-the-art results on all popular panoptic UDA benchmarks.
I-Design: Personalized LLM Interior Designer
Çelen, Ata, Han, Guo, Schindler, Konrad, Van Gool, Luc, Armeni, Iro, Obukhov, Anton, Wang, Xi
Interior design allows us to be who we are and live how we want - each design is as unique as our distinct personality. However, it is not trivial for non-professionals to express and materialize this since it requires aligning functional and visual expectations with the constraints of physical space; this renders interior design a luxury. To make it more accessible, we present I-Design, a personalized interior designer that allows users to generate and visualize their design goals through natural language communication. I-Design starts with a team of large language model agents that engage in dialogues and logical reasoning with one another, transforming textual user input into feasible scene graph designs with relative object relationships. Subsequently, an effective placement algorithm determines optimal locations for each object within the scene. The final design is then constructed in 3D by retrieving and integrating assets from an existing object database. Additionally, we propose a new evaluation protocol that utilizes a vision-language model and complements the design pipeline. Extensive quantitative and qualitative experiments show that I-Design outperforms existing methods in delivering high-quality 3D design solutions and aligning with abstract concepts that match user input, showcasing its advantages across detailed 3D arrangement and conceptual fidelity.
Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector
Fu, Yuqian, Wang, Yu, Pan, Yixuan, Huai, Lian, Qiu, Xingyu, Shangguan, Zeyu, Liu, Tong, Kong, Lingjie, Fu, Yanwei, Van Gool, Luc, Jiang, Xingqun
This paper addresses the challenge of cross-domain few-shot object detection (CD-FSOD), aiming to develop an accurate object detector for novel domains with minimal labeled examples. While transformer-based open-set detectors e.g., DE-ViT~\cite{zhang2023detect} have excelled in both open-vocabulary object detection and traditional few-shot object detection, detecting categories beyond those seen during training, we thus naturally raise two key questions: 1) can such open-set detection methods easily generalize to CD-FSOD? 2) If no, how to enhance the results of open-set methods when faced with significant domain gaps? To address the first question, we introduce several metrics to quantify domain variances and establish a new CD-FSOD benchmark with diverse domain metric values. Some State-Of-The-Art (SOTA) open-set object detection methods are evaluated on this benchmark, with evident performance degradation observed across out-of-domain datasets. This indicates the failure of adopting open-set detectors directly for CD-FSOD. Sequentially, to overcome the performance degradation issue and also to answer the second proposed question, we endeavor to enhance the vanilla DE-ViT. With several novel components including finetuning, a learnable prototype module, and a lightweight attention module, we present an improved Cross-Domain Vision Transformer for CD-FSOD (CD-ViTO). Experiments show that our CD-ViTO achieves impressive results on both out-of-domain and in-domain target datasets, establishing new SOTAs for both CD-FSOD and FSOD. All the datasets, codes, and models will be released to the community.
Key-Graph Transformer for Image Restoration
Ren, Bin, Li, Yawei, Liang, Jingyun, Ranjan, Rakesh, Liu, Mengyuan, Cucchiara, Rita, Van Gool, Luc, Sebe, Nicu
While it is crucial to capture global information for effective image restoration (IR), integrating such cues into transformer-based methods becomes computationally expensive, especially with high input resolution. Furthermore, the self-attention mechanism in transformers is prone to considering unnecessary global cues from unrelated objects or regions, introducing computational inefficiencies. In response to these challenges, we introduce the Key-Graph Transformer (KGT) in this paper. Specifically, KGT views patch features as graph nodes. The proposed Key-Graph Constructor efficiently forms a sparse yet representative Key-Graph by selectively connecting essential nodes instead of all the nodes. Then the proposed Key-Graph Attention is conducted under the guidance of the Key-Graph only among selected nodes with linear computational complexity within each window. Extensive experiments across 6 IR tasks confirm the proposed KGT's state-of-the-art performance, showcasing advancements both quantitatively and qualitatively.
InseRF: Text-Driven Generative Object Insertion in Neural 3D Scenes
Shahbazi, Mohamad, Claessens, Liesbeth, Niemeyer, Michael, Collins, Edo, Tonioni, Alessio, Van Gool, Luc, Tombari, Federico
We introduce InseRF, a novel method for generative object insertion in the NeRF reconstructions of 3D scenes. Based on a user-provided textual description and a 2D bounding box in a reference viewpoint, InseRF generates new objects in 3D scenes. Recently, methods for 3D scene editing have been profoundly transformed, owing to the use of strong priors of text-to-image diffusion models in 3D generative modeling. Existing methods are mostly effective in editing 3D scenes via style and appearance changes or removing existing objects. Generating new objects, however, remains a challenge for such methods, which we address in this study. Specifically, we propose grounding the 3D object insertion to a 2D object insertion in a reference view of the scene. The 2D edit is then lifted to 3D using a single-view object reconstruction method. The reconstructed object is then inserted into the scene, guided by the priors of monocular depth estimation methods. We evaluate our method on various 3D scenes and provide an in-depth analysis of the proposed components. Our experiments with generative insertion of objects in several 3D scenes indicate the effectiveness of our method compared to the existing methods. InseRF is capable of controllable and 3D-consistent object insertion without requiring explicit 3D information as input. Please visit our project page at https://mohamad-shahbazi.github.io/inserf.
Residual Learning for Image Point Descriptors
Shrestha, Rashik, Chhatkuli, Ajad, Kanakis, Menelaos, Van Gool, Luc
Local image feature descriptors have had a tremendous impact on the development and application of computer vision methods. It is therefore unsurprising that significant efforts are being made for learning-based image point descriptors. However, the advantage of learned methods over handcrafted methods in real applications is subtle and more nuanced than expected. Moreover, handcrafted descriptors such as SIFT and SURF still perform better point localization in Structure-from-Motion (SfM) compared to many learned counterparts. In this paper, we propose a very simple and effective approach to learning local image descriptors by using a hand-crafted detector and descriptor. Specifically, we choose to learn only the descriptors, supported by handcrafted descriptors while discarding the point localization head. We optimize the final descriptor by leveraging the knowledge already present in the handcrafted descriptor. Such an approach of optimization allows us to discard learning knowledge already present in non-differentiable functions such as the hand-crafted descriptors and only learn the residual knowledge in the main network branch. This offers 50X convergence speed compared to the standard baseline architecture of SuperPoint while at inference the combined descriptor provides superior performance over the learned and hand-crafted descriptors. This is done with minor increase in the computations over the baseline learned descriptor. Our approach has potential applications in ensemble learning and learning with non-differentiable functions. We perform experiments in matching, camera localization and Structure-from-Motion in order to showcase the advantages of our approach.
Event-Free Moving Object Segmentation from Moving Ego Vehicle
Zhou, Zhuyun, Wu, Zongwei, Paudel, Danda Pani, Boutteau, Rémi, Yang, Fan, Van Gool, Luc, Timofte, Radu, Ginhac, Dominique
Moving object segmentation (MOS) in dynamic scenes is challenging for autonomous driving, especially for sequences obtained from moving ego vehicles. Most state-of-the-art methods leverage motion cues obtained from optical flow maps. However, since these methods are often based on optical flows that are pre-computed from successive RGB frames, this neglects the temporal consideration of events occurring within inter-frame and limits the practicality of these methods in real-life situations. To address these limitations, we propose to exploit event cameras for better video understanding, which provide rich motion cues without relying on optical flow. To foster research in this area, we first introduce a novel large-scale dataset called DSEC-MOS for moving object segmentation from moving ego vehicles. Subsequently, we devise EmoFormer, a novel network able to exploit the event data. For this purpose, we fuse the event prior with spatial semantic maps to distinguish moving objects from the static background, adding another level of dense supervision around our object of interest - moving ones. Our proposed network relies only on event data for training but does not require event input during inference, making it directly comparable to frame-only methods in terms of efficiency and more widely usable in many application cases. An exhaustive comparison with 8 state-of-the-art video object segmentation methods highlights a significant performance improvement of our method over all other methods. Project Page: https://github.com/ZZY-Zhou/DSEC-MOS.
Lego: Learning to Disentangle and Invert Concepts Beyond Object Appearance in Text-to-Image Diffusion Models
Motamed, Saman, Paudel, Danda Pani, Van Gool, Luc
Diffusion models have revolutionized generative content creation and text-to-image (T2I) diffusion models in particular have increased the creative freedom of users by allowing scene synthesis using natural language. T2I models excel at synthesizing concepts such as nouns, appearances, and styles. To enable customized content creation based on a few example images of a concept, methods such as Textual Inversion and DreamBooth invert the desired concept and enable synthesizing it in new scenes. However, inverting more general concepts that go beyond object appearance and style (adjectives and verbs) through natural language, remains a challenge. Two key characteristics of these concepts contribute to the limitations of current inversion methods. 1) Adjectives and verbs are entangled with nouns (subject) and can hinder appearance-based inversion methods, where the subject appearance leaks into the concept embedding and 2) describing such concepts often extends beyond single word embeddings (being frozen in ice, walking on a tightrope, etc.) that current methods do not handle. In this study, we introduce Lego, a textual inversion method designed to invert subject entangled concepts from a few example images. Lego disentangles concepts from their associated subjects using a simple yet effective Subject Separation step and employs a Context Loss that guides the inversion of single/multi-embedding concepts. In a thorough user study, Lego-generated concepts were preferred over 70% of the time when compared to the baseline. Additionally, visual question answering using a large language model suggested Lego-generated concepts are better aligned with the text description of the concept.