Not enough data to create a plot.
Try a different view from the menu above.
Vahdat, Arash
A Variational Perspective on Solving Inverse Problems with Diffusion Models
Mardani, Morteza, Song, Jiaming, Kautz, Jan, Vahdat, Arash
Diffusion models have emerged as a key pillar of foundation models in visual domains. One of their critical applications is to universally solve different downstream inverse tasks via a single diffusion prior without re-training for each task. Most inverse tasks can be formulated as inferring a posterior distribution over data (e.g., a full image) given a measurement (e.g., a masked image). This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable. To cope with this challenge, we propose a variational approach that by design seeks to approximate the true posterior distribution. We show that our approach naturally leads to regularization by denoising diffusion process (RED-Diff) where denoisers at different timesteps concurrently impose different structural constraints over the image. To gauge the contribution of denoisers from different timesteps, we propose a weighting mechanism based on signal-to-noise-ratio (SNR). Our approach provides a new variational perspective for solving inverse problems with diffusion models, allowing us to formulate sampling as stochastic optimization, where one can simply apply off-the-shelf solvers with lightweight iterates. Our experiments for image restoration tasks such as inpainting and superresolution demonstrate the strengths of our method compared with state-of-the-art sampling-based diffusion models.
PhysDiff: Physics-Guided Human Motion Diffusion Model
Yuan, Ye, Song, Jiaming, Iqbal, Umar, Vahdat, Arash, Kautz, Jan
Denoising diffusion models hold great promise for generating diverse and realistic human motions. However, existing motion diffusion models largely disregard the laws of physics in the diffusion process and often generate physically-implausible motions with pronounced artifacts such as floating, foot sliding, and ground penetration. This seriously impacts the quality of generated motions and limits their real-world application. To address this issue, we present a novel physics-guided motion diffusion model (PhysDiff), which incorporates physical constraints into the diffusion process. Specifically, we propose a physics-based motion projection module that uses motion imitation in a physics simulator to project the denoised motion of a diffusion step to a physically-plausible motion. The projected motion is further used in the next diffusion step to guide the denoising diffusion process. Intuitively, the use of physics in our model iteratively pulls the motion toward a physically-plausible space, which cannot be achieved by simple post-processing. Experiments on large-scale human motion datasets show that our approach achieves state-of-the-art motion quality and improves physical plausibility drastically (>78% for all datasets).
Fast Sampling of Diffusion Models via Operator Learning
Zheng, Hongkai, Nie, Weili, Vahdat, Arash, Azizzadenesheli, Kamyar, Anandkumar, Anima
Diffusion models have found widespread adoption in various areas. However, their sampling process is slow because it requires hundreds to thousands of network evaluations to emulate a continuous process defined by differential equations. In this work, we use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models. Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method that generates images with only one model forward pass. We propose diffusion model sampling with neural operator (DSNO) that maps the initial condition, i.e., Gaussian distribution, to the continuous-time solution trajectory of the reverse diffusion process. To model the temporal correlations along the trajectory, we introduce temporal convolution layers that are parameterized in the Fourier space into the given diffusion model backbone. We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
Fast Training of Diffusion Models with Masked Transformers
Zheng, Hongkai, Nie, Weili, Vahdat, Arash, Anandkumar, Anima
We propose an efficient approach to train large diffusion models with masked transformers. While masked transformers have been extensively explored for representation learning, their application to generative learning is less explored in the vision domain. Our work is the first to exploit masked training to reduce the training cost of diffusion models significantly. Specifically, we randomly mask out a high proportion (\emph{e.g.}, 50\%) of patches in diffused input images during training. For masked training, we introduce an asymmetric encoder-decoder architecture consisting of a transformer encoder that operates only on unmasked patches and a lightweight transformer decoder on full patches. To promote a long-range understanding of full patches, we add an auxiliary task of reconstructing masked patches to the denoising score matching objective that learns the score of unmasked patches. Experiments on ImageNet-256$\times$256 show that our approach achieves the same performance as the state-of-the-art Diffusion Transformer (DiT) model, using only 31\% of its original training time. Thus, our method allows for efficient training of diffusion models without sacrificing the generative performance.
I$^2$SB: Image-to-Image Schr\"odinger Bridge
Liu, Guan-Horng, Vahdat, Arash, Huang, De-An, Theodorou, Evangelos A., Nie, Weili, Anandkumar, Anima
We propose Image-to-Image Schr\"odinger Bridge (I$^2$SB), a new class of conditional diffusion models that directly learn the nonlinear diffusion processes between two given distributions. These diffusion bridges are particularly useful for image restoration, as the degraded images are structurally informative priors for reconstructing the clean images. I$^2$SB belongs to a tractable class of Schr\"odinger bridge, the nonlinear extension to score-based models, whose marginal distributions can be computed analytically given boundary pairs. This results in a simulation-free framework for nonlinear diffusions, where the I$^2$SB training becomes scalable by adopting practical techniques used in standard diffusion models. We validate I$^2$SB in solving various image restoration tasks, including inpainting, super-resolution, deblurring, and JPEG restoration on ImageNet 256x256 and show that I$^2$SB surpasses standard conditional diffusion models with more interpretable generative processes. Moreover, I$^2$SB matches the performance of inverse methods that additionally require the knowledge of the corruption operators. Our work opens up new algorithmic opportunities for developing efficient nonlinear diffusion models on a large scale. scale. Project page and codes: https://i2sb.github.io/
State-specific protein-ligand complex structure prediction with a multi-scale deep generative model
Qiao, Zhuoran, Nie, Weili, Vahdat, Arash, Miller, Thomas F. III, Anandkumar, Anima
The binding complexes formed by proteins and small molecule ligands are ubiquitous and critical to life. Despite recent advancements in protein structure prediction, existing algorithms are so far unable to systematically predict the binding ligand structures along with their regulatory effects on protein folding. To address this discrepancy, we present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures solely using protein sequence and ligand molecular graph inputs. NeuralPLexer adopts a deep generative model to sample the 3D structures of the binding complex and their conformational changes at an atomistic resolution. The model is based on a diffusion process that incorporates essential biophysical constraints and a multi-scale geometric deep learning system to iteratively sample residue-level contact maps and all heavy-atom coordinates in a hierarchical manner. NeuralPLexer achieves state-of-the-art performance compared to all existing methods on benchmarks for both protein-ligand blind docking and flexible binding site structure recovery. Moreover, owing to its specificity in sampling both ligand-free-state and ligand-bound-state ensembles, NeuralPLexer consistently outperforms AlphaFold2 in terms of global protein structure accuracy on both representative structure pairs with large conformational changes (average TM-score=0.93) and recently determined ligand-binding proteins (average TM-score=0.89). Case studies reveal that the predicted conformational variations are consistent with structure determination experiments for important targets, including human KRAS$^\textrm{G12C}$, ketol-acid reductoisomerase, and purine GPCRs. Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
Recurrence without Recurrence: Stable Video Landmark Detection with Deep Equilibrium Models
Micaelli, Paul, Vahdat, Arash, Yin, Hongxu, Kautz, Jan, Molchanov, Pavlo
Cascaded computation, whereby predictions are recurrently refined over several stages, has been a persistent theme throughout the development of landmark detection models. In this work, we show that the recently proposed Deep Equilibrium Model (DEQ) can be naturally adapted to this form of computation. Our Landmark DEQ (LDEQ) achieves state-of-the-art performance on the challenging WFLW facial landmark dataset, reaching $3.92$ NME with fewer parameters and a training memory cost of $\mathcal{O}(1)$ in the number of recurrent modules. Furthermore, we show that DEQs are particularly suited for landmark detection in videos. In this setting, it is typical to train on still images due to the lack of labelled videos. This can lead to a ``flickering'' effect at inference time on video, whereby a model can rapidly oscillate between different plausible solutions across consecutive frames. By rephrasing DEQs as a constrained optimization, we emulate recurrence at inference time, despite not having access to temporal data at training time. This Recurrence without Recurrence (RwR) paradigm helps in reducing landmark flicker, which we demonstrate by introducing a new metric, normalized mean flicker (NMF), and contributing a new facial landmark video dataset (WFLW-V) targeting landmark uncertainty. On the WFLW-V hard subset made up of $500$ videos, our LDEQ with RwR improves the NME and NMF by $10$ and $13\%$ respectively, compared to the strongest previously published model using a hand-tuned conventional filter.
eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers
Balaji, Yogesh, Nah, Seungjun, Huang, Xun, Vahdat, Arash, Song, Jiaming, Zhang, Qinsheng, Kreis, Karsten, Aittala, Miika, Aila, Timo, Laine, Samuli, Catanzaro, Bryan, Karras, Tero, Liu, Ming-Yu
Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis. Starting from random noise, such text-to-image diffusion models gradually synthesize images in an iterative fashion while conditioning on text prompts. We find that their synthesis behavior qualitatively changes throughout this process: Early in sampling, generation strongly relies on the text prompt to generate text-aligned content, while later, the text conditioning is almost entirely ignored. This suggests that sharing model parameters throughout the entire generation process may not be ideal. Therefore, in contrast to existing works, we propose to train an ensemble of text-to-image diffusion models specialized for different synthesis stages. To maintain training efficiency, we initially train a single model, which is then split into specialized models that are trained for the specific stages of the iterative generation process. Our ensemble of diffusion models, called eDiff-I, results in improved text alignment while maintaining the same inference computation cost and preserving high visual quality, outperforming previous large-scale text-to-image diffusion models on the standard benchmark. In addition, we train our model to exploit a variety of embeddings for conditioning, including the T5 text, CLIP text, and CLIP image embeddings. We show that these different embeddings lead to different behaviors. Notably, the CLIP image embedding allows an intuitive way of transferring the style of a reference image to the target text-to-image output. Lastly, we show a technique that enables eDiff-I's "paint-with-words" capability. A user can select the word in the input text and paint it in a canvas to control the output, which is very handy for crafting the desired image in mind. The project page is available at https://deepimagination.cc/eDiff-I/
Score-Based Generative Modeling with Critically-Damped Langevin Diffusion
Dockhorn, Tim, Vahdat, Arash, Kreis, Karsten
Score-based generative models (SGMs) have demonstrated remarkable synthesis quality. SGMs rely on a diffusion process that gradually perturbs the data towards a tractable distribution, while the generative model learns to denoise. The complexity of this denoising task is, apart from the data distribution itself, uniquely determined by the diffusion process. We argue that current SGMs employ overly simplistic diffusions, leading to unnecessarily complex denoising processes, which limit generative modeling performance. Based on connections to statistical mechanics, we propose a novel critically-damped Langevin diffusion (CLD) and show that CLD-based SGMs achieve superior performance. CLD can be interpreted as running a joint diffusion in an extended space, where the auxiliary variables can be considered "velocities" that are coupled to the data variables as in Hamiltonian dynamics. We derive a novel score matching objective for CLD and show that the model only needs to learn the score function of the conditional distribution of the velocity given data, an easier task than learning scores of the data directly. We also derive a new sampling scheme for efficient synthesis from CLD-based diffusion models. We find that CLD outperforms previous SGMs in synthesis quality for similar network architectures and sampling compute budgets. We show that our novel sampler for CLD significantly outperforms solvers such as Euler--Maruyama. Our framework provides new insights into score-based denoising diffusion models and can be readily used for high-resolution image synthesis. Project page and code: https://nv-tlabs.github.io/CLD-SGM.
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Xiao, Zhisheng, Kreis, Karsten, Vahdat, Arash
A wide variety of deep generative models has been developed in the past decade. We call the challenge imposed by these requirements the generative learning trilemma, as the existing models often trade some of them for others. Particularly, denoising diffusion models have shown impressive sample quality and diversity, but their expensive sampling does not yet allow them to be applied in many real-world applications. In this paper, we argue that slow sampling in these models is fundamentally attributed to the Gaussian assumption in the denoising step which is justified only for small step sizes. To enable denoising with large steps, and hence, to reduce the total number of denoising steps, we propose to model the denoising distribution using a complex multimodal distribution. We introduce denoising diffusion generative adversarial networks (denoising diffusion GANs) that model each denoising step using a multimodal conditional GAN. Through extensive evaluations, we show that denoising diffusion GANs obtain sample quality and diversity competitive with original diffusion models while being 2000 faster on the CIFAR-10 dataset. Compared to traditional GANs, our model exhibits better mode coverage and sample diversity. To the best of our knowledge, denoising diffusion GAN is the first model that reduces sampling cost in diffusion models to an extent that allows them to be applied to real-world applications inexpensively. However, mode coverage and data diversity are important for better representing minorities and for reducing the negative social impacts of generative models.