Goto

Collaborating Authors

 Utiyama, Masao


Syntax-Directed Attention for Neural Machine Translation

AAAI Conferences

Attention mechanism, including global attention and local attention, plays a key role in neural machine translation (NMT). Global attention attends to all source words for word prediction. In comparison, local attention selectively looks at fixed-window source words. However, alignment weights for the current target word often decrease to the left and right by linear distance centering on the aligned source position and neglect syntax distance constraints. In this paper, we extend the local attention with syntax-distance constraint, which focuses on syntactically related source words with the predicted target word to learning a more effective context vector for predicting translation. Moreover, we further propose a double context NMT architecture, which consists of a global context vector and a syntax-directed context vector from the global attention, to provide more translation performance for NMT from source representation. The experiments on the large-scale Chinese-to-English and English-to-German translation tasks show that the proposed approach achieves a substantial and significant improvement over the baseline system.


Agreement on Target-Bidirectional LSTMs for Sequence-to-Sequence Learning

AAAI Conferences

Recurrent neural networks, particularly the long short- term memory networks, are extremely appealing for sequence-to-sequence learning tasks. Despite their great success, they typically suffer from a fundamental short- coming: they are prone to generate unbalanced targets with good prefixes but bad suffixes, and thus perfor- mance suffers when dealing with long sequences. We propose a simple yet effective approach to overcome this shortcoming. Our approach relies on the agreement between a pair of target-directional LSTMs, which generates more balanced targets. In addition, we develop two efficient approximate search methods for agreement that are empirically shown to be almost optimal in terms of sequence-level losses. Extensive experiments were performed on two standard sequence-to-sequence trans- duction tasks: machine transliteration and grapheme-to- phoneme transformation. The results show that the proposed approach achieves consistent and substantial im- provements, compared to six state-of-the-art systems. In particular, our approach outperforms the best reported error rates by a margin (up to 9% relative gains) on the grapheme-to-phoneme task.