Not enough data to create a plot.
Try a different view from the menu above.
Urtasun, Raquel
LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving
Cui, Alexander, Sadat, Abbas, Casas, Sergio, Liao, Renjie, Urtasun, Raquel
Self-driving vehicles need to anticipate a diverse set of future traffic scenarios in order to safely share the road with other traffic participants that may exhibit rare but dangerous driving. In this paper, we present LookOut, an approach to jointly perceive the environment and predict a diverse set of futures from sensor data, estimate their probability, and optimize a contingency plan over these diverse future realizations. In particular, we learn a diverse joint distribution over multi-agent future trajectories in a traffic scene that allows us to cover a wide range of future modes with high sample efficiency while leveraging the expressive power of generative models. Unlike previous work in diverse motion forecasting, our diversity objective explicitly rewards sampling future scenarios that require distinct reactions from the self-driving vehicle for improved safety. Our contingency planner then finds comfortable trajectories that ensure safe reactions to a wide range of future scenarios. Through extensive evaluations, we show that our model demonstrates significantly more diverse and sample-efficient motion forecasting in a large-scale self-driving dataset as well as safer and more comfortable motion plans in long-term closed-loop simulations than current state-of-the-art models.
TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors
Suo, Simon, Regalado, Sebastian, Casas, Sergio, Urtasun, Raquel
Simulation has the potential to massively scale evaluation of self-driving systems enabling rapid development as well as safe deployment. To close the gap between simulation and the real world, we need to simulate realistic multi-agent behaviors. Existing simulation environments rely on heuristic-based models that directly encode traffic rules, which cannot capture irregular maneuvers (e.g., nudging, U-turns) and complex interactions (e.g., yielding, merging). In contrast, we leverage real-world data to learn directly from human demonstration and thus capture a more diverse set of actor behaviors. To this end, we propose TrafficSim, a multi-agent behavior model for realistic traffic simulation. In particular, we leverage an implicit latent variable model to parameterize a joint actor policy that generates socially-consistent plans for all actors in the scene jointly. To learn a robust policy amenable for long horizon simulation, we unroll the policy in training and optimize through the fully differentiable simulation across time. Our learning objective incorporates both human demonstrations as well as common sense. We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines. Notably, we can exploit trajectories generated by TrafficSim as effective data augmentation for training better motion planner.
AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles
Wang, Jingkang, Pun, Ava, Tu, James, Manivasagam, Sivabalan, Sadat, Abbas, Casas, Sergio, Ren, Mengye, Urtasun, Raquel
As self-driving systems become better, simulating scenarios where the autonomy stack is likely to fail becomes of key importance. Traditionally, those scenarios are generated for a few scenes with respect to the planning module that takes ground-truth actor states as input. This does not scale and cannot identify all possible autonomy failures, such as perception failures due to occlusion. In this paper, we propose AdvSim, an adversarial framework to generate safety-critical scenarios for any LiDAR-based autonomy system. Given an initial traffic scenario, AdvSim modifies the actors' trajectories in a physically plausible manner and updates the LiDAR sensor data to create realistic observations of the perturbed world. Importantly, by simulating directly from sensor data, we obtain adversarial scenarios that are safety-critical for the full autonomy stack. Our experiments show that our approach is general and can identify thousands of semantically meaningful safety-critical scenarios for a wide range of modern self-driving systems. Furthermore, we show that the robustness and safety of these autonomy systems can be further improved by training them with scenarios generated by AdvSim.
Permute, Quantize, and Fine-tune: Efficient Compression of Neural Networks
Martinez, Julieta, Shewakramani, Jashan, Liu, Ting Wei, Bรขrsan, Ioan Andrei, Zeng, Wenyuan, Urtasun, Raquel
Compressing large neural networks is an important step for their deployment in resource-constrained computational platforms. In this context, vector quantization is an appealing framework that expresses multiple parameters using a single code, and has recently achieved state-of-the-art network compression on a range of core vision and natural language processing tasks. Key to the success of vector quantization is deciding which parameter groups should be compressed together. Previous work has relied on heuristics that group the spatial dimension of individual convolutional filters, but a general solution remains unaddressed. This is desirable for pointwise convolutions (which dominate modern architectures), linear layers (which have no notion of spatial dimension), and convolutions (when more than one filter is compressed to the same codeword). In this paper we make the observation that the weights of two adjacent layers can be permuted while expressing the same function. We then establish a connection to rate-distortion theory and search for permutations that result in networks that are easier to compress. Finally, we rely on an annealed quantization algorithm to better compress the network and achieve higher final accuracy. We show results on image classification, object detection, and segmentation, reducing the gap with the uncompressed model by 40 to 70% with respect to the current state of the art.
Multi-Agent Routing Value Iteration Network
Sykora, Quinlan, Ren, Mengye, Urtasun, Raquel
In this paper we tackle the problem of routing multiple agents in a coordinated manner. This is a complex problem that has a wide range of applications in fleet management to achieve a common goal, such as mapping from a swarm of robots and ride sharing. Traditional methods are typically not designed for realistic environments hich contain sparsely connected graphs and unknown traffic, and are often too slow in runtime to be practical. In contrast, we propose a graph neural network based model that is able to perform multi-agent routing based on learned value iteration in a sparsely connected graph with dynamically changing traffic conditions. Moreover, our learned communication module enables the agents to coordinate online and adapt to changes more effectively. We created a simulated environment to mimic realistic mapping performed by autonomous vehicles with unknown minimum edge coverage and traffic conditions; our approach significantly outperforms traditional solvers both in terms of total cost and runtime. We also show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations
Sadat, Abbas, Casas, Sergio, Ren, Mengye, Wu, Xinyu, Dhawan, Pranaab, Urtasun, Raquel
In this paper we propose a novel end-to-end learnable network that performs joint perception, prediction and motion planning for self-driving vehicles and produces interpretable intermediate representations. Unlike existing neural motion planners, our motion planning costs are consistent with our perception and prediction estimates. This is achieved by a novel differentiable semantic occupancy representation that is explicitly used as cost by the motion planning process. Our network is learned end-to-end from human demonstrations. The experiments in a large-scale manual-driving dataset and closed-loop simulation show that the proposed model significantly outperforms state-of-the-art planners in imitating the human behaviors while producing much safer trajectories.
LoCo: Local Contrastive Representation Learning
Xiong, Yuwen, Ren, Mengye, Urtasun, Raquel
Deep neural nets typically perform end-to-end backpropagation to learn the weights, a procedure that creates synchronization constraints in the weight update step across layers and is not biologically plausible. Recent advances in unsupervised contrastive representation learning invite the question of whether a learning algorithm can also be made local, that is, the updates of lower layers do not directly depend on the computation of upper layers. While Greedy InfoMax [39] separately learns each block with a local objective, we found that it consistently hurts readout accuracy in state-of-the-art unsupervised contrastive learning algorithms, possibly due to the greedy objective as well as gradient isolation. In this work, we discover that by overlapping local blocks stacking on top of each other, we effectively increase the decoder depth and allow upper blocks to implicitly send feedbacks to lower blocks. This simple design closes the performance gap between local learning and end-to-end contrastive learning algorithms for the first time. Aside from standard ImageNet experiments, we also show results on complex downstream tasks such as object detection and instance segmentation directly using readout features.
Hierarchical Verification for Adversarial Robustness
Lim, Cong Han, Urtasun, Raquel, Yumer, Ersin
We introduce a new framework for the exact point-wise $\ell_p$ robustness verification problem that exploits the layer-wise geometric structure of deep feed-forward networks with rectified linear activations (ReLU networks). The activation regions of the network partition the input space, and one can verify the $\ell_p$ robustness around a point by checking all the activation regions within the desired radius. The GeoCert algorithm (Jordan et al., NeurIPS 2019) treats this partition as a generic polyhedral complex in order to detect which region to check next. In contrast, our LayerCert framework considers the \emph{nested hyperplane arrangement} structure induced by the layers of the ReLU network and explores regions in a hierarchical manner. We show that, under certain conditions on the algorithm parameters, LayerCert provably reduces the number and size of the convex programs that one needs to solve compared to GeoCert. Furthermore, our LayerCert framework allows the incorporation of lower bounding routines based on convex relaxations to further improve performance. Experimental results demonstrate that LayerCert can significantly reduce both the number of convex programs solved and the running time over the state-of-the-art.
Implicit Latent Variable Model for Scene-Consistent Motion Forecasting
Casas, Sergio, Gulino, Cole, Suo, Simon, Luo, Katie, Liao, Renjie, Urtasun, Raquel
In order to plan a safe maneuver an autonomous vehicle must accurately perceive its environment, and understand the interactions among traffic participants. In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data. In particular, we propose to characterize the joint distribution over future trajectories via an implicit latent variable model. We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene. Coupled with a deterministic decoder, we obtain trajectory samples that are consistent across traffic participants, achieving state-of-the-art results in motion forecasting and interaction understanding. Last but not least, we demonstrate that our motion forecasts result in safer and more comfortable motion planning.
The Importance of Prior Knowledge in Precise Multimodal Prediction
Casas, Sergio, Gulino, Cole, Suo, Simon, Urtasun, Raquel
Roads have well defined geometries, topologies, and traffic rules. While this has been widely exploited in motion planning methods to produce maneuvers that obey the law, little work has been devoted to utilize these priors in perception and motion forecasting methods. In this paper we propose to incorporate these structured priors as a loss function. In contrast to imposing hard constraints, this approach allows the model to handle non-compliant maneuvers when those happen in the real world. Safe motion planning is the end goal, and thus a probabilistic characterization of the possible future developments of the scene is key to choose the plan with the lowest expected cost. Towards this goal, we design a framework that leverages REINFORCE to incorporate non-differentiable priors over sample trajectories from a probabilistic model, thus optimizing the whole distribution. We demonstrate the effectiveness of our approach on real-world self-driving datasets containing complex road topologies and multi-agent interactions. Our motion forecasts not only exhibit better precision and map understanding, but most importantly result in safer motion plans taken by our self-driving vehicle. We emphasize that despite the importance of this evaluation, it has been often overlooked by previous perception and motion forecasting works.