Umesh, S.
Investigation of Ensemble features of Self-Supervised Pretrained Models for Automatic Speech Recognition
Arunkumar, A, Sukhadia, Vrunda N, Umesh, S.
Self-supervised learning (SSL) based models have been shown to generate powerful representations that can be used to improve the performance of downstream speech tasks. Several state-of-the-art SSL models are available, and each of these models optimizes a different loss which gives rise to the possibility of their features being complementary. This paper proposes using an ensemble of such SSL representations and models, which exploits the complementary nature of the features extracted by the various pretrained models. We hypothesize that this results in a richer feature representation and shows results for the ASR downstream task. To this end, we use three SSL models that have shown excellent results on ASR tasks, namely HuBERT, Wav2vec2.0, and WaveLM. We explore the ensemble of models fine-tuned for the ASR task and the ensemble of features using the embeddings obtained from the pre-trained models for a downstream ASR task. We get improved performance over individual models and pre-trained features using Librispeech(100h) and WSJ dataset for the downstream tasks.
Modified SPLICE and its Extension to Non-Stereo Data for Noise Robust Speech Recognition
Kumar, D. S. Pavan, Prasad, N. Vishnu, Joshi, Vikas, Umesh, S.
In this paper, a modification to the training process of the popular SPLICE algorithm has been proposed for noise robust speech recognition. The modification is based on feature correlations, and enables this stereo-based algorithm to improve the performance in all noise conditions, especially in unseen cases. Further, the modified framework is extended to work for non-stereo datasets where clean and noisy training utterances, but not stereo counterparts, are required. Finally, an MLLR-based computationally efficient run-time noise adaptation method in SPLICE framework has been proposed. The modified SPLICE shows 8.6% absolute improvement over SPLICE in Test C of Aurora-2 database, and 2.93% overall. Non-stereo method shows 10.37% and 6.93% absolute improvements over Aurora-2 and Aurora-4 baseline models respectively. Run-time adaptation shows 9.89% absolute improvement in modified framework as compared to SPLICE for Test C, and 4.96% overall w.r.t. standard MLLR adaptation on HMMs.