Plotting

 Ulbricht, Markus


On the Correspondence of Non-flat Assumption-based Argumentation and Logic Programming with Negation as Failure in the Head

arXiv.org Artificial Intelligence

The relation between (a fragment of) assumption-based argumentation (ABA) and logic programs (LPs) under stable model semantics is well-studied. However, for obtaining this relation, the ABA framework needs to be restricted to being flat, i.e., a fragment where the (defeasible) assumptions can never be entailed, only assumed to be true or false. Here, we remove this restriction and show a correspondence between non-flat ABA and LPs with negation as failure in their head. We then extend this result to so-called set-stable ABA semantics, originally defined for the fragment of non-flat ABA called bipolar ABA. We showcase how to define set-stable semantics for LPs with negation as failure in their head and show the correspondence to set-stable ABA semantics.


Instantiations and Computational Aspects of Non-Flat Assumption-based Argumentation

arXiv.org Artificial Intelligence

Most existing computational tools for assumption-based argumentation (ABA) focus on so-called flat frameworks, disregarding the more general case. In this paper, we study an instantiation-based approach for reasoning in possibly non-flat ABA. We make use of a semantics-preserving translation between ABA and bipolar argumentation frameworks (BAFs). By utilizing compilability theory, we establish that the constructed BAFs will in general be of exponential size. In order to keep the number of arguments and computational cost low, we present three ways of identifying redundant arguments. Moreover, we identify fragments of ABA which admit a poly-sized instantiation. We propose two algorithmic approaches for reasoning in possibly non-flat ABA. The first approach utilizes the BAF instantiation while the second works directly without constructing arguments. An empirical evaluation shows that the former outperforms the latter on many instances, reflecting the lower complexity of BAF reasoning. This result is in contrast to flat ABA, where direct approaches dominate instantiation-based approaches.


Non-flat ABA is an Instance of Bipolar Argumentation

arXiv.org Artificial Intelligence

Assumption-based Argumentation (ABA) is a well-known structured argumentation formalism, whereby arguments and attacks between them are drawn from rules, defeasible assumptions and their contraries. A common restriction imposed on ABA frameworks (ABAFs) is that they are flat, i.e., each of the defeasible assumptions can only be assumed, but not derived. While it is known that flat ABAFs can be translated into abstract argumentation frameworks (AFs) as proposed by Dung, no translation exists from general, possibly non-flat ABAFs into any kind of abstract argumentation formalism. In this paper, we close this gap and show that bipolar AFs (BAFs) can instantiate general ABAFs. To this end we develop suitable, novel BAF semantics which borrow from the notion of deductive support. We investigate basic properties of our BAFs, including computational complexity, and prove the desired relation to ABAFs under several semantics. Finally, in order to support computation and explainability, we propose the notion of dispute trees for our BAF semantics.


Understanding ProbLog as Probabilistic Argumentation

arXiv.org Artificial Intelligence

ProbLog is a popular probabilistic logic programming language/tool, widely used for applications requiring to deal with inherent uncertainties in structured domains. In this paper we study connections between ProbLog and a variant of another well-known formalism combining symbolic reasoning and reasoning under uncertainty, i.e. probabilistic argumentation. Specifically, we show that ProbLog is an instance of a form of Probabilistic Abstract Argumentation (PAA) that builds upon Assumption-Based Argumentation (ABA). The connections pave the way towards equipping ProbLog with alternative semantics, inherited from PAA/PABA, as well as obtaining novel argumentation semantics for PAA/PABA, leveraging on prior connections between ProbLog and argumentation. Further, the connections pave the way towards novel forms of argumentative explanations for ProbLog's outputs.


On Dynamics in Structured Argumentation Formalisms

Journal of Artificial Intelligence Research

This paper is a contribution to the research on dynamics in assumption-based argumentation (ABA). We investigate situations where a given knowledge base undergoes certain changes. We show that two frequently investigated problems, namely enforcement of a given target atom and deciding strong equivalence of two given ABA frameworks, are intractable in general. Notably, these problems are both tractable for abstract argumentation frameworks (AFs) which admit a close correspondence to ABA by constructing semanticspreserving instances. Inspired by this observation, we search for tractable fragments for ABA frameworks by means of the instantiated AFs. We argue that the usual instantiation procedure is not suitable for the investigation of dynamic scenarios since too much information is lost when constructing the abstract framework. We thus consider an extension of AFs, called cvAFs, equipping arguments with conclusions and vulnerabilities in order to better anticipate their role after the underlying knowledge base is extended. We investigate enforcement and strong equivalence for cvAFs and present syntactic conditions to decide them. We show that the correspondence between cvAFs and ABA frameworks is close enough to capture dynamics in ABA. This yields the desired tractable fragment. We furthermore discuss consequences for the corresponding problems for logic programs.


Recursion in Abstract Argumentation is Hard --- On the Complexity of Semantics Based on Weak Admissibility

Journal of Artificial Intelligence Research

We study the computational complexity of abstract argumentation semantics based on  weak admissibility, a recently introduced concept to deal with arguments of self-defeating  nature. Our results reveal that semantics based on weak admissibility are of much higher  complexity (under typical assumptions) compared to all argumentation semantics which  have been analysed in terms of complexity so far. In fact, we show PSPACE-completeness  of all non-trivial standard decision problems for weak-admissible based semantics. We then  investigate potential tractable fragments and show that restricting the frameworks under  consideration to certain graph-classes significantly reduces the complexity. We also show  that weak-admissibility based extensions can be computed by dividing the given graph into  its strongly connected components (SCCs). This technique ensures that the bottleneck  when computing extensions is the size of the largest SCC instead of the size of the graph  itself and therefore contributes to the search for fixed-parameter tractable implementations  for reasoning with weak admissibility. 


Measuring Strong Inconsistency

AAAI Conferences

We address the issue of quantitatively assessing the severity of inconsistencies in nonmonotonic frameworks. While measuring inconsistency in classical logics has been investigated for some time now, taking the nonmonotonicity into account poses new challenges. In order to tackle them, we focus on the structure of minimal strongly kb-inconsistent subsets of a knowledge base kb---a generalization of minimal inconsistency to arbitrary, possibly nonmonotonic, frameworks. We propose measures based on this notion and investigate their behavior in a nonmonotonic setting by revisiting existing rationality postulates, analyzing the compliance of the proposed measures with these postulates, and by investigating their computational complexity.