Plotting

 Tuomas Sandholm







Optimistic Regret Minimization for Extensive-Form Games via Dilated Distance-Generating Functions

Neural Information Processing Systems

We study the performance of optimistic regret-minimization algorithms for both minimizing regret in, and computing Nash equilibria of, zero-sum extensive-form games. In order to apply these algorithms to extensive-form games, a distancegenerating function is needed. We study the use of the dilated entropy and dilated Euclidean distance functions. For the dilated Euclidean distance function we prove the first explicit bounds on the strong-convexity parameter for general treeplexes. Furthermore, we show that the use of dilated distance-generating functions enable us to decompose the mirror descent algorithm, and its optimistic variant, into local mirror descent algorithms at each information set. This decomposition mirrors the structure of the counterfactual regret minimization framework, and enables important techniques in practice, such as distributed updates and pruning of cold parts of the game tree.


Efficient Regret Minimization Algorithm for Extensive-Form Correlated Equilibrium

Neural Information Processing Systems

Self-play methods based on regret minimization have become the state of the art for computing Nash equilibria in large two-players zero-sum extensive-form games. These methods fundamentally rely on the hierarchical structure of the players' sequential strategy spaces to construct a regret minimizer that recursively minimizes regret at each decision point in the game tree. In this paper, we introduce the first efficient regret minimization algorithm for computing extensive-form correlated equilibria in large two-player general-sum games with no chance moves. Designing such an algorithm is significantly more challenging than designing one for the Nash equilibrium counterpart, as the constraints that define the space of correlation plans lack the hierarchical structure and might even form cycles. We show that some of the constraints are redundant and can be excluded from consideration, and present an efficient algorithm that generates the space of extensive-form correlation plans incrementally from the remaining constraints. This structural decomposition is achieved via a special convexity-preserving operation that we coin scaled extension. We show that a regret minimizer can be designed for a scaled extension of any two convex sets, and that from the decomposition we then obtain a global regret minimizer. Our algorithm produces feasible iterates. Experiments show that it significantly outperforms prior approaches and for larger problems it is the only viable option.


Safe and Nested Subgame Solving for Imperfect-Information Games

Neural Information Processing Systems

In imperfect-information games, the optimal strategy in a subgame may depend on the strategy in other, unreached subgames. Thus a subgame cannot be solved in isolation and must instead consider the strategy for the entire game as a whole, unlike perfect-information games. Nevertheless, it is possible to first approximate a solution for the whole game and then improve it in individual subgames. This is referred to as subgame solving. We introduce subgame-solving techniques that outperform prior methods both in theory and practice. We also show how to adapt them, and past subgame-solving techniques, to respond to opponent actions that are outside the original action abstraction; this significantly outperforms the prior state-of-the-art approach, action translation. Finally, we show that subgame solving can be repeated as the game progresses down the game tree, leading to far lower exploitability. These techniques were a key component of Libratus, the first AI to defeat top humans in heads-up no-limit Texas hold'em poker.