Goto

Collaborating Authors

 Tulyakov, Sergey


Real-Time Neural Light Field on Mobile Devices

arXiv.org Artificial Intelligence

Recent efforts in Neural Rendering Fields (NeRF) have shown impressive results on novel view synthesis by utilizing implicit neural representation to represent 3D scenes. Due to the process of volumetric rendering, the inference speed for NeRF is extremely slow, limiting the application scenarios of utilizing NeRF on resource-constrained hardware, such as mobile devices. Many works have been conducted to reduce the latency of running NeRF models. However, most of them still require high-end GPU for acceleration or extra storage memory, which is all unavailable on mobile devices. Another emerging direction utilizes the neural light field (NeLF) for speedup, as only one forward pass is performed on a ray to predict the pixel color. Nevertheless, to reach a similar rendering quality as NeRF, the network in NeLF is designed with intensive computation, which is not mobile-friendly. In this work, we propose an efficient network that runs in real-time on mobile devices for neural rendering. We follow the setting of NeLF to train our network. Unlike existing works, we introduce a novel network architecture that runs efficiently on mobile devices with low latency and small size, i.e., saving $15\times \sim 24\times$ storage compared with MobileNeRF. Our model achieves high-resolution generation while maintaining real-time inference for both synthetic and real-world scenes on mobile devices, e.g., $18.04$ms (iPhone 13) for rendering one $1008\times756$ image of real 3D scenes. Additionally, we achieve similar image quality as NeRF and better quality than MobileNeRF (PSNR $26.15$ vs. $25.91$ on the real-world forward-facing dataset).


SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation

arXiv.org Artificial Intelligence

In this work, we present a novel framework built to simplify 3D asset generation for amateur users. To enable interactive generation, our method supports a variety of input modalities that can be easily provided by a human, including images, text, partially observed shapes and combinations of these, further allowing to adjust the strength of each input. At the core of our approach is an encoder-decoder, compressing 3D shapes into a compact latent representation, upon which a diffusion model is learned. To enable a variety of multi-modal inputs, we employ task-specific encoders with dropout followed by a cross-attention mechanism. Due to its flexibility, our model naturally supports a variety of tasks, outperforming prior works on shape completion, image-based 3D reconstruction, and text-to-3D. Most interestingly, our model can combine all these tasks into one swiss-army-knife tool, enabling the user to perform shape generation using incomplete shapes, images, and textual descriptions at the same time, providing the relative weights for each input and facilitating interactivity. Despite our approach being shape-only, we further show an efficient method to texture the generated shape using large-scale text-to-image models.


3D generation on ImageNet

arXiv.org Artificial Intelligence

Existing 3D-from-2D generators are typically designed for well-curated single-category datasets, where all the objects have (approximately) the same scale, 3D location, and orientation, and the camera always points to the center of the scene. This makes them inapplicable to diverse, in-the-wild datasets of non-alignable scenes rendered from arbitrary camera poses. In this work, we develop a 3D generator with Generic Priors (3DGP): a 3D synthesis framework with more general assumptions about the training data, and show that it scales to very challenging datasets, like ImageNet. Our model is based on three new ideas. First, we incorporate an inaccurate off-the-shelf depth estimator into 3D GAN training via a special depth adaptation module to handle the imprecision. Then, we create a flexible camera model and a regularization strategy for it to learn its distribution parameters during training. Finally, we extend the recent ideas of transferring knowledge from pre-trained classifiers into GANs for patch-wise trained models by employing a simple distillation-based technique on top of the discriminator. It achieves more stable training than the existing methods and speeds up the convergence by at least 40%. We explore our model on four datasets: SDIP Dogs 256x256, SDIP Elephants 256x256, LSUN Horses 256x256, and ImageNet 256x256, and demonstrate that 3DGP outperforms the recent state-of-the-art in terms of both texture and geometry quality. Code and visualizations: https://snap-research.github.io/3dgp.


EpiGRAF: Rethinking training of 3D GANs

arXiv.org Artificial Intelligence

A very recent trend in generative modeling is building 3D-aware generators from 2D image collections. To induce the 3D bias, such models typically rely on volumetric rendering, which is expensive to employ at high resolutions. During the past months, there appeared more than 10 works that address this scaling issue by training a separate 2D decoder to upsample a low-resolution image (or a feature tensor) produced from a pure 3D generator. But this solution comes at a cost: not only does it break multi-view consistency (i.e. shape and texture change when the camera moves), but it also learns the geometry in a low fidelity. In this work, we show that it is possible to obtain a high-resolution 3D generator with SotA image quality by following a completely different route of simply training the model patch-wise. We revisit and improve this optimization scheme in two ways. First, we design a location- and scale-aware discriminator to work on patches of different proportions and spatial positions. Second, we modify the patch sampling strategy based on an annealed beta distribution to stabilize training and accelerate the convergence. The resulted model, named EpiGRAF, is an efficient, high-resolution, pure 3D generator, and we test it on four datasets (two introduced in this work) at $256^2$ and $512^2$ resolutions. It obtains state-of-the-art image quality, high-fidelity geometry and trains ${\approx} 2.5 \times$ faster than the upsampler-based counterparts. Project website: https://universome.github.io/epigraf.


LADIS: Language Disentanglement for 3D Shape Editing

arXiv.org Artificial Intelligence

Natural language interaction is a promising direction for democratizing 3D shape design. However, existing methods for text-driven 3D shape editing face challenges in producing decoupled, local edits to 3D shapes. We address this problem by learning disentangled latent representations that ground language in 3D geometry. To this end, we propose a complementary tool set including a novel network architecture, a disentanglement loss, and a new editing procedure. Additionally, to measure edit locality, we define a new metric that we call part-wise edit precision. We show that our method outperforms existing SOTA methods by 20% in terms of edit locality, and up to 6.6% in terms of language reference resolution accuracy. Our work suggests that by solely disentangling language representations, downstream 3D shape editing can become more local to relevant parts, even if the model was never given explicit part-based supervision.


F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

arXiv.org Artificial Intelligence

Neural network quantization is a promising compression technique to reduce memory footprint and save energy consumption, potentially leading to real-time inference. However, there is a performance gap between quantized and full-precision models. To reduce it, existing quantization approaches require high-precision INT32 or full-precision multiplication during inference for scaling or dequantization. This introduces a noticeable cost in terms of memory, speed, and required energy. To tackle these issues, we present F8Net, a novel quantization framework consisting of only fixed-point 8-bit multiplication. To derive our method, we first discuss the advantages of fixed-point multiplication with different formats of fixed-point numbers and study the statistical behavior of the associated fixed-point numbers. Second, based on the statistical and algorithmic analysis, we apply different fixed-point formats for weights and activations of different layers. We introduce a novel algorithm to automatically determine the right format for each layer during training. Third, we analyze a previous quantization algorithm -- parameterized clipping activation (PACT) -- and reformulate it using fixed-point arithmetic. Finally, we unify the recently proposed method for quantization fine-tuning and our fixed-point approach to show the potential of our method. We verify F8Net on ImageNet for MobileNet V1/V2 and ResNet18/50. Our approach achieves comparable and better performance, when compared not only to existing quantization techniques with INT32 multiplication or floating-point arithmetic, but also to the full-precision counterparts, achieving state-of-the-art performance.


StyleGAN-V: A Continuous Video Generator with the Price, Image Quality and Perks of StyleGAN2

arXiv.org Artificial Intelligence

Videos show continuous events, yet most - if not all - video synthesis frameworks treat them discretely in time. In this work, we think of videos of what they should be - time-continuous signals, and extend the paradigm of neural representations to build a continuous-time video generator. For this, we first design continuous motion representations through the lens of positional embeddings. Then, we explore the question of training on very sparse videos and demonstrate that a good generator can be learned by using as few as 2 frames per clip. After that, we rethink the traditional image and video discriminators pair and propose to use a single hypernetwork-based one. This decreases the training cost and provides richer learning signal to the generator, making it possible to train directly on 1024$^2$ videos for the first time. We build our model on top of StyleGAN2 and it is just 5% more expensive to train at the same resolution while achieving almost the same image quality. Moreover, our latent space features similar properties, enabling spatial manipulations that our method can propagate in time. We can generate arbitrarily long videos at arbitrary high frame rate, while prior work struggles to generate even 64 frames at a fixed rate. Our model achieves state-of-the-art results on four modern 256$^2$ video synthesis benchmarks and one 1024$^2$ resolution one. Videos and the source code are available at the project website: https://universome.github.io/stylegan-v.


Playable Video Generation

arXiv.org Artificial Intelligence

This paper introduces the unsupervised learning problem of playable video generation (PVG). In PVG, we aim at allowing a user to control the generated video by selecting a discrete action at every time step as when playing a video game. The difficulty of the task lies both in learning semantically consistent actions and in generating realistic videos conditioned on the user input. We propose a novel framework for PVG that is trained in a self-supervised manner on a large dataset of unlabelled videos. We employ an encoder-decoder architecture where the predicted action labels act as bottleneck. The network is constrained to learn a rich action space using, as main driving loss, a reconstruction loss on the generated video. We demonstrate the effectiveness of the proposed approach on several datasets with wide environment variety. Further details, code and examples are available on our project page willi-menapace.github.io/playable-video-generation-website.


Anchor Tasks: Inexpensive, Shared, and Aligned Tasks for Domain Adaptation

arXiv.org Machine Learning

W e introduce a novel domain adaptation formulation from synthetic dataset (source domain) to real dataset (target domain) for the category of tasks with per-pixel predictions. The annotations of these tasks are relatively hard to acquire in the real world, such as single-view depth estimation or surface normal estimation. Our key idea is to introduce anchor tasks, whose annotations are (1) less expensive to acquire than the main task, such as facial landmarks and semantic segmentations; and (2) shared in availability for both synthetic and real datasets so that it serves as "anchor" between tasks; and finally (3) aligned spatially with main task annotations on a per-pixel basis so that it also serves as spatial anchor between tasks' outputs. T o further utilize spatial alignment between the anchor and main tasks, we introduce a novel freeze approach that freezes the final layers of our network after training on the source domain so that spatial and contextual relationship between tasks are maintained when adapting on the target domain. W e evaluate our methods on two pairs of datasets, performing surface normal estimation in indoor scenes and faces, using semantic segmentation and facial landmarks as anchor tasks separately. W e show the importance of using anchor tasks in both synthetic and real domains, and that the freeze approach outperforms competing approaches, reaching results in facial images on par with the state-of-the-art system that leverages detailed facial appearance model.


Animating Arbitrary Objects via Deep Motion Transfer

arXiv.org Machine Learning

This paper introduces a novel deep learning framework for image animation. Given an input image with a target object and a driving video sequence depicting a moving object, our framework generates a video in which the target object is animated according to the driving sequence. This is achieved through a deep architecture that decouples appearance and motion information. Our framework consists of three main modules: (i) a Keypoint Detector unsupervisely trained to extract object keypoints, (ii) a Dense Motion prediction network for generating dense heatmaps from sparse keypoints, in order to better encode motion information and (iii) a Motion Transfer Network, which uses the motion heatmaps and appearance information extracted from the input image to synthesize the output frames. We demonstrate the effectiveness of our method on several benchmark datasets, spanning a wide variety of object appearances, and show that our approach outperforms state-of-the-art image animation and video generation methods.