Plotting

 Tso, Geoffrey


Extrinsically-Focused Evaluation of Omissions in Medical Summarization

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown promise in safety-critical applications such as healthcare, yet the ability to quantify performance has lagged. An example of this challenge is in evaluating a summary of the patient's medical record. A resulting summary can enable the provider to get a high-level overview of the patient's health status quickly. Yet, a summary that omits important facts about the patient's record can produce a misleading picture. This can lead to negative consequences on medical decision-making. We propose MED-OMIT as a metric to explore this challenge. We focus on using provider-patient history conversations to generate a subjective (a summary of the patient's history) as a case study. We begin by discretizing facts from the dialogue and identifying which are omitted from the subjective. To determine which facts are clinically relevant, we measure the importance of each fact to a simulated differential diagnosis. We compare MED-OMIT's performance to that of clinical experts and find broad agreement We use MED-OMIT to evaluate LLM performance on subjective generation and find some LLMs (gpt-4 and llama-3.1-405b) work well with little effort, while others (e.g. Llama 2) perform worse.


DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents

arXiv.org Artificial Intelligence

Large language models (LLMs) have emerged as valuable tools for many natural language understanding tasks. In safety-critical applications such as healthcare, the utility of these models is governed by their ability to generate outputs that are factually accurate and complete. In this work, we present dialog-enabled resolving agents (DERA). DERA is a paradigm made possible by the increased conversational abilities of LLMs, namely GPT-4. It provides a simple, interpretable forum for models to communicate feedback and iteratively improve output. We frame our dialog as a discussion between two agent types - a Researcher, who processes information and identifies crucial problem components, and a Decider, who has the autonomy to integrate the Researcher's information and makes judgments on the final output. We test DERA against three clinically-focused tasks. For medical conversation summarization and care plan generation, DERA shows significant improvement over the base GPT-4 performance in both human expert preference evaluations and quantitative metrics. In a new finding, we also show that GPT-4's performance (70%) on an open-ended version of the MedQA question-answering (QA) dataset (Jin et al. 2021, USMLE) is well above the passing level (60%), with DERA showing similar performance. We release the open-ended MEDQA dataset at https://github.com/curai/curai-research/tree/main/DERA.


Learning from the experts: From expert systems to machine learned diagnosis models

arXiv.org Artificial Intelligence

Expert diagnostic support systems have been extensively studied. The practical application of these systems in real-world scenarios have been somewhat limited due to well-understood shortcomings such as extensibility. More recently, machine learned models for medical diagnosis have gained momentum since they can learn and generalize patterns found in very large datasets like electronic health records. These models also have shortcomings. In particular, there is no easy way to incorporate prior knowledge from existing literature or experts. In this paper, we present a method to merge both approaches by using expert systems as generative models that create simulated data on which models can be learned. We demonstrate that such a learned model not only preserve the original properties of the expert systems but also addresses some of their limitations. Furthermore, we show how this approach can also be used as the starting point to combine expert knowledge with knowledge extracted from other data sources such as electronic health records.