Tsipras, Dimitris
Image Synthesis with a Single (Robust) Classifier
Santurkar, Shibani, Ilyas, Andrew, Tsipras, Dimitris, Engstrom, Logan, Tran, Brandon, Madry, Aleksander
We show that the basic classification framework alone can be used to tackle some of the most challenging tasks in image synthesis. In contrast to other state-of-the-art approaches, the toolkit we develop is rather minimal: it uses a single, off-the-shelf classifier for all these tasks. The crux of our approach is that we train this classifier to be adversarially robust. It turns out that adversarial robustness is precisely what we need to directly manipulate salient features of the input. Overall, our findings demonstrate the utility of robustness in the broader machine learning context.
Label-Consistent Backdoor Attacks
Turner, Alexander, Tsipras, Dimitris, Madry, Aleksander
Deep neural networks have been demonstrated to be vulnerable to backdoor attacks. Specifically, by injecting a small number of maliciously constructed inputs into the training set, an adversary is able to plant a backdoor into the trained model. This backdoor can then be activated during inference by a backdoor trigger to fully control the model's behavior. While such attacks are very effective, they crucially rely on the adversary injecting arbitrary inputs that are---often blatantly---mislabeled. Such samples would raise suspicion upon human inspection, potentially revealing the attack. Thus, for backdoor attacks to remain undetected, it is crucial that they maintain label-consistency---the condition that injected inputs are consistent with their labels. In this work, we leverage adversarial perturbations and generative models to execute efficient, yet label-consistent, backdoor attacks. Our approach is based on injecting inputs that appear plausible, yet are hard to classify, hence causing the model to rely on the (easier-to-learn) backdoor trigger.
Exploring the Landscape of Spatial Robustness
Engstrom, Logan, Tran, Brandon, Tsipras, Dimitris, Schmidt, Ludwig, Madry, Aleksander
The study of adversarial robustness has so far largely focused on perturbations bound in p-norms. However, state-of-the-art models turn out to be also vulnerable to other, more natural classes of perturbations such as translations and rotations. In this work, we thoroughly investigate the vulnerability of neural network--based classifiers to rotations and translations. While data augmentation offers relatively small robustness, we use ideas from robust optimization and test-time input aggregation to significantly improve robustness. Finally we find that, in contrast to the p-norm case, first-order methods cannot reliably find worst-case perturbations. This highlights spatial robustness as a fundamentally different setting requiring additional study. Code available at https://github.com/MadryLab/adversarial_spatial and https://github.com/MadryLab/spatial-pytorch.
Computer Vision with a Single (Robust) Classifier
Santurkar, Shibani, Tsipras, Dimitris, Tran, Brandon, Ilyas, Andrew, Engstrom, Logan, Madry, Aleksander
We show that the basic classification framework alone can be used to tackle some of the most challenging computer vision tasks. In contrast to other state-of-the-art approaches, the toolkit we develop is rather minimal: it uses a single, off-the-shelf classifier for all these tasks. The crux of our approach is that we train this classifier to be adversarially robust. It turns out that adversarial robustness is precisely what we need to directly manipulate salient features of the input. Overall, our findings demonstrate the utility of robustness in the broader machine learning context. Code and models for our experiments can be found at https://git.io/robust-apps.
Learning Perceptually-Aligned Representations via Adversarial Robustness
Engstrom, Logan, Ilyas, Andrew, Santurkar, Shibani, Tsipras, Dimitris, Tran, Brandon, Madry, Aleksander
Many applications of machine learning require models that are human-aligned, i.e., that make decisions based on human-meaningful information about the input. We identify the pervasive brittleness of deep networks' learned representations as a fundamental barrier to attaining this goal. We then re-cast robust optimization as a tool for enforcing human priors on the features learned by deep neural networks. The resulting robust feature representations turn out to be significantly more aligned with human perception. We leverage these representations to perform input interpolation, feature manipulation, and sensitivity mapping, without any post-processing or human intervention after model training. Our code and models for reproducing these results is available at https://git.io/robust-reps.
Adversarial Examples Are Not Bugs, They Are Features
Ilyas, Andrew, Santurkar, Shibani, Tsipras, Dimitris, Engstrom, Logan, Tran, Brandon, Madry, Aleksander
Adversarial examples have attracted significant attention in machine learning, but the reasons for their existence and pervasiveness remain unclear. We demonstrate that adversarial examples can be directly attributed to the presence of non-robust features: features derived from patterns in the data distribution that are highly predictive, yet brittle and incomprehensible to humans. After capturing these features within a theoretical framework, we establish their widespread existence in standard datasets. Finally, we present a simple setting where we can rigorously tie the phenomena we observe in practice to a misalignment between the (human-specified) notion of robustness and the inherent geometry of the data.
On Evaluating Adversarial Robustness
Carlini, Nicholas, Athalye, Anish, Papernot, Nicolas, Brendel, Wieland, Rauber, Jonas, Tsipras, Dimitris, Goodfellow, Ian, Madry, Aleksander, Kurakin, Alexey
Correctly evaluating defenses against adversarial examples has proven to be extremely difficult. Despite the significant amount of recent work attempting to design defenses that withstand adaptive attacks, few have succeeded; most papers that propose defenses are quickly shown to be incorrect. We believe a large contributing factor is the difficulty of performing security evaluations. In this paper, we discuss the methodological foundations, review commonly accepted best practices, and suggest new methods for evaluating defenses to adversarial examples. We hope that both researchers developing defenses as well as readers and reviewers who wish to understand the completeness of an evaluation consider our advice in order to avoid common pitfalls.
Adversarially Robust Generalization Requires More Data
Schmidt, Ludwig, Santurkar, Shibani, Tsipras, Dimitris, Talwar, Kunal, Madry, Aleksander
Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
Adversarially Robust Generalization Requires More Data
Schmidt, Ludwig, Santurkar, Shibani, Tsipras, Dimitris, Talwar, Kunal, Madry, Aleksander
Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
How Does Batch Normalization Help Optimization?
Santurkar, Shibani, Tsipras, Dimitris, Ilyas, Andrew, Madry, Aleksander
Batch Normalization (BatchNorm) is a widely adopted technique that enables faster and more stable training of deep neural networks (DNNs). Despite its pervasiveness, the exact reasons for BatchNorm's effectiveness are still poorly understood. The popular belief is that this effectiveness stems from controlling the change of the layers' input distributions during training to reduce the so-called "internal covariate shift". In this work, we demonstrate that such distributional stability of layer inputs has little to do with the success of BatchNorm. Instead, we uncover a more fundamental impact of BatchNorm on the training process: it makes the optimization landscape significantly smoother. This smoothness induces a more predictive and stable behavior of the gradients, allowing for faster training.