Goto

Collaborating Authors

 Tschiatschek, Sebastian


Teaching Inverse Reinforcement Learners via Features and Demonstrations

Neural Information Processing Systems

Learning near-optimal behaviour from an expert's demonstrations typically relies on the assumption that the learner knows the features that the true reward function depends on. In this paper, we study the problem of learning from demonstrations in the setting where this is not the case, i.e., where there is a mismatch between the worldviews of the learner and the expert. We introduce a natural quantity, the teaching risk, which measures the potential suboptimality of policies that look optimal to the learner in this setting. We show that bounds on the teaching risk guarantee that the learner is able to find a near-optimal policy using standard algorithms based on inverse reinforcement learning. Based on these findings, we suggest a teaching scheme in which the expert can decrease the teaching risk by updating the learner's worldview, and thus ultimately enable her to find a near-optimal policy.


Teaching Inverse Reinforcement Learners via Features and Demonstrations

Neural Information Processing Systems

Learning near-optimal behaviour from an expert's demonstrations typically relies on the assumption that the learner knows the features that the true reward function depends on. In this paper, we study the problem of learning from demonstrations in the setting where this is not the case, i.e., where there is a mismatch between the worldviews of the learner and the expert. We introduce a natural quantity, the teaching risk, which measures the potential suboptimality of policies that look optimal to the learner in this setting. We show that bounds on the teaching risk guarantee that the learner is able to find a near-optimal policy using standard algorithms based on inverse reinforcement learning. Based on these findings, we suggest a teaching scheme in which the expert can decrease the teaching risk by updating the learner's worldview, and thus ultimately enable her to find a near-optimal policy.


Efficient and Robust Machine Learning for Real-World Systems

arXiv.org Machine Learning

While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation and the vision of the Internet-of-Things fuel the interest in resource efficient approaches. These approaches require a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. On top of this, it is crucial to treat uncertainty in a consistent manner in all but the simplest applications of machine learning systems. In particular, a desideratum for any real-world system is to be robust in the presence of outliers and corrupted data, as well as being `aware' of its limits, i.e.\ the system should maintain and provide an uncertainty estimate over its own predictions. These complex demands are among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology into every day's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. First we provide a comprehensive review of resource-efficiency in deep neural networks with focus on techniques for model size reduction, compression and reduced precision. These techniques can be applied during training or as post-processing and are widely used to reduce both computational complexity and memory footprint. As most (practical) neural networks are limited in their ways to treat uncertainty, we contrast them with probabilistic graphical models, which readily serve these desiderata by means of probabilistic inference. In that way, we provide an extensive overview of the current state-of-the-art of robust and efficient machine learning for real-world systems.


Teaching Inverse Reinforcement Learners via Features and Demonstrations

arXiv.org Machine Learning

Learning near-optimal behaviour from an expert's demonstrations typically relies on the assumption that the learner knows the features that the true reward function depends on. In this paper, we study the problem of learning from demonstrations in the setting where this is not the case, i.e., where there is a mismatch between the worldviews of the learner and the expert. We introduce a natural quantity, the teaching risk, which measures the potential suboptimality of policies that look optimal to the learner in this setting. We show that bounds on the teaching risk guarantee that the learner is able to find a near-optimal policy using standard algorithms based on inverse reinforcement learning. Based on these findings, we suggest a teaching scheme in which the expert can decrease the teaching risk by updating the learner's worldview, and thus ultimately enable her to find a near-optimal policy.


Successor Uncertainties: exploration and uncertainty in temporal difference learning

arXiv.org Machine Learning

We consider the problem of balancing exploration and exploitation in sequential decision making problems. To explore efficiently, it is vital to consider the uncertainty over all consequences of a decision, and not just those that follow immediately; the uncertainties involved need to be propagated according to the dynamics of the problem. To this end, we develop Successor Uncertainties, a probabilistic model for the state-action value function of a Markov Decision Process that propagates uncertainties in a coherent and scalable way. We relate our approach to other classical and contemporary methods for exploration and present an empirical analysis.


EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE

arXiv.org Machine Learning

Making decisions requires information relevant to the task at hand. Many real-life decision-making situations allow acquiring further relevant information at a specific cost. For example, in assessing the health status of a patient we may decide to take additional measurements such as diagnostic tests or imaging scans before making a final assessment. More information that is relevant allows for better decisions but it may be costly to acquire all of this information. How can we trade off the desire to make good decisions with the option to acquire further information at a cost? To this end, we propose a principled framework, named EDDI (Efficient Dynamic Discovery of high-value Information), based on the theory of Bayesian experimental design. In EDDI we propose a novel partial variational autoencoder (Partial VAE), to efficiently handle missing data over varying subsets of known information. EDDI combines this Partial VAE with an acquisition function that maximizes expected information gain on a set of target variables. EDDI is efficient and demonstrates that dynamic discovery of high-value information is possible; we show cost reduction at the same decision quality and improved decision quality at the same cost in benchmarks and in two health-care applications. We believe there is great potential for realizing these gains in real-world decision support systems.


Sum-Product Networks for Sequence Labeling

arXiv.org Machine Learning

We consider higher-order linear-chain conditional random fields (HO-LC-CRFs) for sequence modelling, and use sum-product networks (SPNs) for representing higher-order input- and output-dependent factors. SPNs are a recently introduced class of deep models for which exact and efficient inference can be performed. By combining HO-LC-CRFs with SPNs, expressive models over both the output labels and the hidden variables are instantiated while still enabling efficient exact inference. Furthermore, the use of higher-order factors allows us to capture relations of multiple input segments and multiple output labels as often present in real-world data. These relations can not be modelled by the commonly used first-order models and higher-order models with local factors including only a single output label. We demonstrate the effectiveness of our proposed models for sequence labeling. In extensive experiments, we outperform other state-of-the-art methods in optical character recognition and achieve competitive results in phone classification.


Variational Inference for Data-Efficient Model Learning in POMDPs

arXiv.org Machine Learning

Partially observable Markov decision processes (POMDPs) are a powerful abstraction for tasks that require decision making under uncertainty, and capture a wide range of real world tasks. Today, effective planning approaches exist that generate effective strategies given black-box models of a POMDP task. Yet, an open question is how to acquire accurate models for complex domains. In this paper we propose DELIP, an approach to model learning for POMDPs that utilizes amortized structured variational inference. We empirically show that our model leads to effective control strategies when coupled with state-of-the-art planners. Intuitively, model-based approaches should be particularly beneficial in environments with changing reward structures, or where rewards are initially unknown. Our experiments confirm that DELIP is particularly effective in this setting.


Differentiable Submodular Maximization

arXiv.org Machine Learning

We consider learning of submodular functions from data. These functions are important in machine learning and have a wide range of applications, e.g. data summarization, feature selection and active learning. Despite their combinatorial nature, submodular functions can be maximized approximately with strong theoretical guarantees in polynomial time. Typically, learning the submodular function and optimization of that function are treated separately, i.e. the function is first learned using a proxy objective and subsequently maximized. In contrast, we show how to perform learning and optimization jointly. By interpreting the output of greedy maximization algorithms as distributions over sequences of items and smoothening these distributions, we obtain a differentiable objective. In this way, we can differentiate through the maximization algorithms and optimize the model to work well with the optimization algorithm. We theoretically characterize the error made by our approach, yielding insights into the trade-off of smoothness and accuracy. We demonstrate the effectiveness of our approach for jointly learning and optimizing on synthetic maxcut data, and on a real world product recommendation application.


Learning User Preferences to Incentivize Exploration in the Sharing Economy

AAAI Conferences

We study platforms in the sharing economy and discuss the need for incentivizing users to explore options that otherwise would not be chosen. For instance, rental platforms such as Airbnb typically rely on customer reviews to provide users with relevant information about different options. Yet, often a large fraction of options does not have any reviews available. Such options are frequently neglected as viable choices, and in turn are unlikely to be evaluated, creating a vicious cycle. Platforms can engage users to deviate from their preferred choice by offering monetary incentives for choosing a different option instead. To efficiently learn the optimal incentives to offer, we consider structural information in user preferences and introduce a novel algorithm---Coordinated Online Learning (CoOL)---for learning with structural information modeled as convex constraints. We provide formal guarantees on the performance of our algorithm and test the viability of our approach in a user study with data of apartments on Airbnb. Our findings suggest that our approach is well-suited to learn appropriate incentives and increase exploration on the investigated platform.