Plotting

 Truong, Quang


TopoX: A Suite of Python Packages for Machine Learning on Topological Domains

arXiv.org Artificial Intelligence

We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. TopoX consists of three packages: TopoNetX facilitates constructing and computing on these domains, including working with nodes, edges and higher-order cells; TopoEmbedX provides methods to embed topological domains into vector spaces, akin to popular graph-based embedding algorithms such as node2vec; TopoModelX is built on top of PyTorch and offers a comprehensive toolbox of higher-order message passing functions for neural networks on topological domains. The extensively documented and unit-tested source code of TopoX is available under MIT license at https://github.com/pyt-team.


Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs), despite achieving remarkable performance across different tasks, are theoretically bounded by the 1-Weisfeiler-Lehman test, resulting in limitations in terms of graph expressivity. Even though prior works on topological higher-order GNNs overcome that boundary, these models often depend on assumptions about sub-structures of graphs. Specifically, topological GNNs leverage the prevalence of cliques, cycles, and rings to enhance the message-passing procedure. Our study presents a novel perspective by focusing on simple paths within graphs during the topological message-passing process, thus liberating the model from restrictive inductive biases. We prove that by lifting graphs to path complexes, our model can generalize the existing works on topology while inheriting several theoretical results on simplicial complexes and regular cell complexes. Without making prior assumptions about graph sub-structures, our method outperforms earlier works in other topological domains and achieves state-of-the-art results on various benchmarks.