Not enough data to create a plot.
Try a different view from the menu above.
Tresp, Volker
GenTKG: Generative Forecasting on Temporal Knowledge Graph
Liao, Ruotong, Jia, Xu, Ma, Yunpu, Tresp, Volker
The rapid advancements in large language models (LLMs) have ignited interest in the temporal knowledge graph (tKG) domain, where conventional carefully designed embedding-based and rule-based models dominate. The question remains open of whether pre-trained LLMs can understand structured temporal relational data and replace them as the foundation model for temporal relational forecasting. Therefore, we bring temporal knowledge forecasting into the generative setting. However, challenges occur in the huge chasms between complex temporal graph data structure and sequential natural expressions LLMs can handle, and between the enormous data sizes of tKGs and heavy computation costs of finetuning LLMs. To address these challenges, we propose a novel retrieval augmented generation framework that performs generative forecasting on tKGs named GenTKG, which combines a temporal logical rule-based retrieval strategy and lightweight parameter-efficient instruction tuning. Extensive experiments have shown that GenTKG outperforms conventional methods of temporal relational forecasting under low computation resources. GenTKG also highlights remarkable transferability with exceeding performance on unseen datasets without re-training. Our work reveals the huge potential of LLMs in the tKG domain and opens a new frontier for generative forecasting on tKGs.
Does Your Model Think Like an Engineer? Explainable AI for Bearing Fault Detection with Deep Learning
Decker, Thomas, Lebacher, Michael, Tresp, Volker
Deep Learning has already been successfully applied to analyze industrial sensor data in a variety of relevant use cases. However, the opaque nature of many well-performing methods poses a major obstacle for real-world deployment. Explainable AI (XAI) and especially feature attribution techniques promise to enable insights about how such models form their decision. But the plain application of such methods often fails to provide truly informative and problem-specific insights to domain experts. In this work, we focus on the specific task of detecting faults in rolling element bearings from vibration signals. We propose a novel and domain-specific feature attribution framework that allows us to evaluate how well the underlying logic of a model corresponds with expert reasoning. Utilizing the framework we are able to validate the trustworthiness and to successfully anticipate the generalization ability of different well-performing deep learning models. Our methodology demonstrates how signal processing tools can effectively be used to enhance Explainable AI techniques and acts as a template for similar problems.
Explaining Deep Neural Networks for Bearing Fault Detection with Vibration Concepts
Decker, Thomas, Lebacher, Michael, Tresp, Volker
Concept-based explanation methods, such as Concept Activation Vectors, are potent means to quantify how abstract or high-level characteristics of input data influence the predictions of complex deep neural networks. However, applying them to industrial prediction problems is challenging as it is not immediately clear how to define and access appropriate concepts for individual use cases and specific data types. In this work, we investigate how to leverage established concept-based explanation techniques in the context of bearing fault detection with deep neural networks trained on vibration signals. Since bearings are prevalent in almost every rotating equipment, ensuring the reliability of intransparent fault detection models is crucial to prevent costly repairs and downtimes of industrial machinery. Our evaluations demonstrate that explaining opaque models in terms of vibration concepts enables human-comprehensible and intuitive insights about their inner workings, but the underlying assumptions need to be carefully validated first.
GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language Models
Shen, Yuanchun, Liao, Ruotong, Han, Zhen, Ma, Yunpu, Tresp, Volker
While multi-modal models have successfully integrated information from image, video, and audio modalities, integrating graph modality into large language models (LLMs) remains unexplored. This discrepancy largely stems from the inherent divergence between structured graph data and unstructured text data. Incorporating graph knowledge provides a reliable source of information, enabling potential solutions to address issues in text generation, e.g., hallucination, and lack of domain knowledge. To evaluate the integration of graph knowledge into language models, a dedicated dataset is needed. However, there is currently no benchmark dataset specifically designed for multimodal graph-language models. To address this gap, we propose GraphextQA, a question answering dataset with paired subgraphs, retrieved from Wikidata, to facilitate the evaluation and future development of graph-language models. Additionally, we introduce a baseline model called CrossGNN, which conditions answer generation on the paired graphs by cross-attending question-aware graph features at decoding. The proposed dataset is designed to evaluate graph-language models' ability to understand graphs and make use of it for answer generation. We perform experiments with language-only models and the proposed graph-language model to validate the usefulness of the paired graphs and to demonstrate the difficulty of the task.
Multi-event Video-Text Retrieval
Zhang, Gengyuan, Ren, Jisen, Gu, Jindong, Tresp, Volker
Video-Text Retrieval (VTR) is a crucial multi-modal task in an era of massive video-text data on the Internet. A plethora of work characterized by using a two-stream Vision-Language model architecture that learns a joint representation of video-text pairs has become a prominent approach for the VTR task. However, these models operate under the assumption of bijective video-text correspondences and neglect a more practical scenario where video content usually encompasses multiple events, while texts like user queries or webpage metadata tend to be specific and correspond to single events. This establishes a gap between the previous training objective and real-world applications, leading to the potential performance degradation of earlier models during inference. In this study, we introduce the Multi-event Video-Text Retrieval (MeVTR) task, addressing scenarios in which each video contains multiple different events, as a niche scenario of the conventional Video-Text Retrieval Task. We present a simple model, Me-Retriever, which incorporates key event video representation and a new MeVTR loss for the MeVTR task. Comprehensive experiments show that this straightforward framework outperforms other models in the Video-to-Text and Text-to-Video tasks, effectively establishing a robust baseline for the MeVTR task. We believe this work serves as a strong foundation for future studies. Code is available at https://github.com/gengyuanmax/MeVTR.
Differentiable Quantum Architecture Search for Quantum Reinforcement Learning
Sun, Yize, Ma, Yunpu, Tresp, Volker
Differentiable quantum architecture search (DQAS) is a gradient-based framework to design quantum circuits automatically in the NISQ era. It was motivated by such as low fidelity of quantum hardware, low flexibility of circuit architecture, high circuit design cost, barren plateau (BP) problem, and periodicity of weights. People used it to address error mitigation, unitary decomposition, and quantum approximation optimization problems based on fixed datasets. Quantum reinforcement learning (QRL) is a part of quantum machine learning and often has various data. QRL usually uses a manually designed circuit. However, the pre-defined circuit needs more flexibility for different tasks, and the circuit design based on various datasets could become intractable in the case of a large circuit. The problem of whether DQAS can be applied to quantum deep Q-learning with various datasets is still open. The main target of this work is to discover the capability of DQAS to solve quantum deep Q-learning problems. We apply a gradient-based framework DQAS on reinforcement learning tasks and evaluate it in two different environments - cart pole and frozen lake. It contains input- and output weights, progressive search, and other new features. The experiments conclude that DQAS can design quantum circuits automatically and efficiently. The evaluation results show significant outperformance compared to the manually designed circuit. Furthermore, the performance of the automatically created circuit depends on whether the super-circuit learned well during the training process. This work is the first to show that gradient-based quantum architecture search is applicable to QRL tasks.
Adversarial Attacks on Tables with Entity Swap
Koleva, Aneta, Ringsquandl, Martin, Tresp, Volker
The capabilities of large language models (LLMs) have been successfully applied in the context of table representation learning. The recently proposed tabular language models have reported state-of-the-art results across various tasks for table interpretation. However, a closer look into the datasets commonly used for evaluation reveals an entity leakage from the train set into the test set. Motivated by this observation, we explore adversarial attacks that represent a more realistic inference setup. Adversarial attacks on text have been shown to greatly affect the performance of LLMs, but currently, there are no attacks targeting tabular language models. In this paper, we propose an evasive entity-swap attack for the column type annotation (CTA) task. Our CTA attack is the first black-box attack on tables, where we employ a similarity-based sampling strategy to generate adversarial examples. The experimental results show that the proposed attack generates up to a 70% drop in performance.
FRAug: Tackling Federated Learning with Non-IID Features via Representation Augmentation
Chen, Haokun, Frikha, Ahmed, Krompass, Denis, Gu, Jindong, Tresp, Volker
Federated Learning (FL) is a decentralized learning paradigm, in which multiple clients collaboratively train deep learning models without centralizing their local data, and hence preserve data privacy. Real-world applications usually involve a distribution shift across the datasets of the different clients, which hurts the generalization ability of the clients to unseen samples from their respective data distributions. In this work, we address the recently proposed feature shift problem where the clients have different feature distributions, while the label distribution is the same. We propose Federated Representation Augmentation (FRAug) to tackle this practical and challenging problem. Our approach generates synthetic client-specific samples in the embedding space to augment the usually small client datasets. For that, we train a shared generative model to fuse the clients knowledge learned from their different feature distributions. This generator synthesizes client-agnostic embeddings, which are then locally transformed into client-specific embeddings by Representation Transformation Networks (RTNets). By transferring knowledge across the clients, the generated embeddings act as a regularizer for the client models and reduce overfitting to the local original datasets, hence improving generalization. Our empirical evaluation on public benchmarks and a real-world medical dataset demonstrates the effectiveness of the proposed method, which substantially outperforms the current state-of-the-art FL methods for non-IID features, including PartialFed and FedBN.
FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning
Chen, Haokun, Zhang, Yao, Krompass, Denis, Gu, Jindong, Tresp, Volker
Recently, foundation models have exhibited remarkable advancements in multi-modal learning. These models, equipped with millions (or billions) of parameters, typically require a substantial amount of data for finetuning. However, collecting and centralizing training data from diverse sectors becomes challenging due to distinct privacy regulations. Federated Learning (FL) emerges as a promising solution, enabling multiple clients to collaboratively train neural networks without centralizing their local data. To alleviate client computation burdens and communication overheads, previous works have adapted Parameter-efficient Finetuning (PEFT) methods for FL. Hereby, only a small fraction of the model parameters are optimized and communicated during federated communications. Nevertheless, most previous works have focused on a single modality and neglected one common phenomenon, i.e., the presence of data heterogeneity across the clients. Therefore, in this work, we propose a finetuning framework tailored to heterogeneous multi-modal FL, called Federated Dual-Aadapter Teacher (FedDAT). Specifically, our approach leverages a Dual-Adapter Teacher (DAT) to address data heterogeneity by regularizing the client local updates and applying Mutual Knowledge Distillation (MKD) for an efficient knowledge transfer. FedDAT is the first approach that enables an efficient distributed finetuning of foundation models for a variety of heterogeneous Vision-Language tasks. To demonstrate its effectiveness, we conduct extensive experiments on four multi-modality FL benchmarks with different types of data heterogeneity, where FedDAT substantially outperforms the existing centralized PEFT methods adapted for FL.
Do DALL-E and Flamingo Understand Each Other?
Li, Hang, Gu, Jindong, Koner, Rajat, Sharifzadeh, Sahand, Tresp, Volker
The field of multimodal research focusing on the comprehension and creation of both images and text has witnessed significant strides. This progress is exemplified by the emergence of sophisticated models dedicated to image captioning at scale, such as the notable Flamingo model and text-to-image generative models, with DALL-E serving as a prominent example. An interesting question worth exploring in this domain is whether Flamingo and DALL-E understand each other. To study this question, we propose a reconstruction task where Flamingo generates a description for a given image and DALL-E uses this description as input to synthesize a new image. We argue that these models understand each other if the generated image is similar to the given image. Specifically, we study the relationship between the quality of the image reconstruction and that of the text generation. We find that an optimal description of an image is one that gives rise to a generated image similar to the original one. The finding motivates us to propose a unified framework to finetune the text-to-image and image-to-text models. Concretely, the reconstruction part forms a regularization loss to guide the tuning of the models. Extensive experiments on multiple datasets with different image captioning and image generation models validate our findings and demonstrate the effectiveness of our proposed unified framework. As DALL-E and Flamingo are not publicly available, we use Stable Diffusion and BLIP in the remaining work. Project website: https://dalleflamingo.github.io.