Plotting

 Trappenberg, Thomas


BenthicNet: A global compilation of seafloor images for deep learning applications

arXiv.org Artificial Intelligence

Advances in underwater imaging enable the collection of extensive seafloor image datasets that are necessary for monitoring important benthic ecosystems. The ability to collect seafloor imagery has outpaced our capacity to analyze it, hindering expedient mobilization of this crucial environmental information. Recent machine learning approaches provide opportunities to increase the efficiency with which seafloor image datasets are analyzed, yet large and consistent datasets necessary to support development of such approaches are scarce. Here we present BenthicNet: a global compilation of seafloor imagery designed to support the training and evaluation of large-scale image recognition models. An initial set of over 11.4 million images was collected and curated to represent a diversity of seafloor environments using a representative subset of 1.3 million images. These are accompanied by 2.6 million annotations translated to the CATAMI scheme, which span 190,000 of the images. A large deep learning model was trained on this compilation and preliminary results suggest it has utility for automating large and small-scale image analysis tasks. The compilation and model are made openly available for use by the scientific community at https://doi.org/10.20383/103.0614.


A Generalized Transformer-based Radio Link Failure Prediction Framework in 5G RANs

arXiv.org Artificial Intelligence

Radio link failure (RLF) prediction system in Radio Access Networks (RANs) is critical for ensuring seamless communication and meeting the stringent requirements of high data rates, low latency, and improved reliability in 5G networks. However, weather conditions such as precipitation, humidity, temperature, and wind impact these communication links. Usually, historical radio link Key Performance Indicators (KPIs) and their surrounding weather station observations are utilized for building learning-based RLF prediction models. However, such models must be capable of learning the spatial weather context in a dynamic RAN and effectively encoding time series KPIs with the weather observation data. Existing works fail to incorporate both of these essential design aspects of the prediction models. This paper fills the gap by proposing GenTrap, a novel RLF prediction framework that introduces a graph neural network (GNN)-based learnable weather effect aggregation module and employs state-of-the-art time series transformer as the temporal feature extractor for radio link failure prediction. The proposed aggregation method of GenTrap can be integrated into any existing prediction model to achieve better performance and generalizability. We evaluate GenTrap on two real-world datasets (rural and urban) with 2.6 million KPI data points and show that GenTrap offers a significantly higher F1-score (0.93 for rural and 0.79 for urban) compared to its counterparts while possessing generalization capability.


LogAvgExp Provides a Principled and Performant Global Pooling Operator

arXiv.org Artificial Intelligence

We seek to improve the pooling operation in neural networks, by applying a more theoretically justified operator. We demonstrate that LogSumExp provides a natural OR operator for logits. When one corrects for the number of elements inside the pooling operator, this becomes $\text{LogAvgExp} := \log(\text{mean}(\exp(x)))$. By introducing a single temperature parameter, LogAvgExp smoothly transitions from the max of its operands to the mean (found at the limiting cases $t \to 0^+$ and $t \to +\infty$). We experimentally tested LogAvgExp, both with and without a learnable temperature parameter, in a variety of deep neural network architectures for computer vision.


Logical Activation Functions: Logit-space equivalents of Boolean Operators

arXiv.org Artificial Intelligence

Neuronal representations within artificial neural networks are commonly understood as logits, representing the log-odds score of presence (versus absence) of features within the stimulus. Under this interpretation, we can derive the probability $P(x_0 \land x_1)$ that a pair of independent features are both present in the stimulus from their logits. By converting the resulting probability back into a logit, we obtain a logit-space equivalent of the AND operation. However, since this function involves taking multiple exponents and logarithms, it is not well suited to be directly used within neural networks. We thus constructed an efficient approximation named $\text{AND}_\text{AIL}$ (the AND operator Approximate for Independent Logits) utilizing only comparison and addition operations, which can be deployed as an activation function in neural networks. Like MaxOut, $\text{AND}_\text{AIL}$ is a generalization of ReLU to two-dimensions. Additionally, we constructed efficient approximations of the logit-space equivalents to the OR and XNOR operators. We deployed these new activation functions, both in isolation and in conjunction, and demonstrated their effectiveness on a variety of tasks including image classification, transfer learning, abstract reasoning, and compositional zero-shot learning.


Skin cancer detection based on deep learning and entropy to detect outlier samples

arXiv.org Machine Learning

We describe our methods to address both tasks of the ISIC 2019 challenge. The goal of this challenge is to provide the diagnostic for skin cancer using images and meta-data. There are nine classes in the dataset, nonetheless, one of them is an outlier and is not present on it. To tackle the challenge, we apply an ensemble of classifiers, which has 13 convolutional neural networks (CNN), we develop two approaches to handle the outlier class and we propose a straightforward method to use the meta-data along with the images. Throughout this report, we detail each methodology and parameters to make it easy to replicate our work. The results obtained are in accordance with the previous challenges and the approaches to detect the outlier class and to address the meta-data seem to be work properly.