Tomar, Manan
Mirror Descent Policy Optimization
Tomar, Manan, Shani, Lior, Efroni, Yonathan, Ghavamzadeh, Mohammad
We propose deep Reinforcement Learning (RL) algorithms inspired by mirror descent, a well-known first-order trust region optimization method for solving constrained convex problems. Our approach, which we call as Mirror Descent Policy Optimization (MDPO), is based on the idea of iteratively solving a `trust-region' problem that minimizes a sum of two terms: a linearization of the objective function and a proximity term that restricts two consecutive updates to be close to each other. Following this approach we derive on-policy and off-policy variants of the MDPO algorithm and analyze their performance while emphasizing important implementation details, motivated by the existing theoretical framework. We highlight the connections between on-policy MDPO and two popular trust region RL algorithms: TRPO and PPO, and conduct a comprehensive empirical comparison of these algorithms. We then derive off-policy MDPO and compare its performance to existing approaches. Importantly, we show that the theoretical framework of MDPO can be scaled to deep RL while achieving good performance on popular benchmarks.
Multi-step Greedy Policies in Model-Free Deep Reinforcement Learning
Tomar, Manan, Efroni, Yonathan, Ghavamzadeh, Mohammad
Multi-step greedy policies have been extensively used in model-based Reinforcement Learning (RL) and in the case when a model of the environment is available (e.g., in the game of Go). In this work, we explore the benefits of multi-step greedy policies in model-free RL when employed in the framework of multi-step Dynamic Programming (DP): multi-step Policy and Value Iteration. These algorithms iteratively solve short-horizon decision problems and converge to the optimal solution of the original one. By using model-free algorithms as solvers of the short-horizon problems we derive fully model-free algorithms which are instances of the multi-step DP framework. As model-free algorithms are prone to instabilities w.r.t. the decision problem horizon, this simple approach can help in mitigating these instabilities and results in an improved model-free algorithms. We test this approach and show results on both discrete and continuous control problems.
MaMiC: Macro and Micro Curriculum for Robotic Reinforcement Learning
Tomar, Manan, Sathuluri, Akhil, Ravindran, Balaraman
Shaping in humans and animals has been shown to be a powerful tool for learning complex tasks as compared to learning in a randomized fashion. This makes the problem less complex and enables one to solve the easier sub task at hand first. Generating a curriculum for such guided learning involves subjecting the agent to easier goals first, and then gradually increasing their difficulty. This paper takes a similar direction and proposes a dual curriculum scheme for solving robotic manipulation tasks with sparse rewards, called MaMiC. It includes a macro curriculum scheme which divides the task into multiple sub-tasks followed by a micro curriculum scheme which enables the agent to learn between such discovered sub-tasks. We show how combining macro and micro curriculum strategies help in overcoming major exploratory constraints considered in robot manipulation tasks without having to engineer any complex rewards. We also illustrate the meaning of the individual curricula and how they can be used independently based on the task. The performance of such a dual curriculum scheme is analyzed on the Fetch environments.
Successor Options: An Option Discovery Framework for Reinforcement Learning
Ramesh, Rahul, Tomar, Manan, Ravindran, Balaraman
The options framework in reinforcement learning models the notion of a skill or a temporally extended sequence of actions. The discovery of a reusable set of skills has typically entailed building options, that navigate to bottleneck states. This work adopts a complementary approach, where we attempt to discover options that navigate to landmark states. These states are prototypical representatives of well-connected regions and can hence access the associated region with relative ease. In this work, we propose Successor Options, which leverages Successor Representations to build a model of the state space. The intra-option policies are learnt using a novel pseudo-reward and the model scales to high-dimensional spaces easily. Additionally, we also propose an Incremental Successor Options model that iterates between constructing Successor Representations and building options, which is useful when robust Successor Representations cannot be built solely from primitive actions. We demonstrate the efficacy of our approach on a collection of grid-worlds, and on the high-dimensional robotic control environment of Fetch.