Goto

Collaborating Authors

 Tolstikhin, Ilya


From optimal transport to generative modeling: the VEGAN cookbook

arXiv.org Machine Learning

We study unsupervised generative modeling in terms of the optimal transport (OT) problem between true (but unknown) data distribution $P_X$ and the latent variable model distribution $P_G$. We show that the OT problem can be equivalently written in terms of probabilistic encoders, which are constrained to match the posterior and prior distributions over the latent space. When relaxed, this constrained optimization problem leads to a penalized optimal transport (POT) objective, which can be efficiently minimized using stochastic gradient descent by sampling from $P_X$ and $P_G$. We show that POT for the 2-Wasserstein distance coincides with the objective heuristically employed in adversarial auto-encoders (AAE) (Makhzani et al., 2016), which provides the first theoretical justification for AAEs known to the authors. We also compare POT to other popular techniques like variational auto-encoders (VAE) (Kingma and Welling, 2014). Our theoretical results include (a) a better understanding of the commonly observed blurriness of images generated by VAEs, and (b) establishing duality between Wasserstein GAN (Arjovsky and Bottou, 2017) and POT for the 1-Wasserstein distance.


Consistent Kernel Mean Estimation for Functions of Random Variables

arXiv.org Machine Learning

We provide a theoretical foundation for non-parametric estimation of functions of random variables using kernel mean embeddings. We show that for any continuous function $f$, consistent estimators of the mean embedding of a random variable $X$ lead to consistent estimators of the mean embedding of $f(X)$. For Mat\'ern kernels and sufficiently smooth functions we also provide rates of convergence. Our results extend to functions of multiple random variables. If the variables are dependent, we require an estimator of the mean embedding of their joint distribution as a starting point; if they are independent, it is sufficient to have separate estimators of the mean embeddings of their marginal distributions. In either case, our results cover both mean embeddings based on i.i.d. samples as well as "reduced set" expansions in terms of dependent expansion points. The latter serves as a justification for using such expansions to limit memory resources when applying the approach as a basis for probabilistic programming.


Permutational Rademacher Complexity: a New Complexity Measure for Transductive Learning

arXiv.org Machine Learning

Transductive learning considers situations when a learner observes $m$ labelled training points and $u$ unlabelled test points with the final goal of giving correct answers for the test points. This paper introduces a new complexity measure for transductive learning called Permutational Rademacher Complexity (PRC) and studies its properties. A novel symmetrization inequality is proved, which shows that PRC provides a tighter control over expected suprema of empirical processes compared to what happens in the standard i.i.d. setting. A number of comparison results are also provided, which show the relation between PRC and other popular complexity measures used in statistical learning theory, including Rademacher complexity and Transductive Rademacher Complexity (TRC). We argue that PRC is a more suitable complexity measure for transductive learning. Finally, these results are combined with a standard concentration argument to provide novel data-dependent risk bounds for transductive learning.


Minimax Lower Bounds for Realizable Transductive Classification

arXiv.org Machine Learning

Transductive learning considers a training set of $m$ labeled samples and a test set of $u$ unlabeled samples, with the goal of best labeling that particular test set. Conversely, inductive learning considers a training set of $m$ labeled samples drawn iid from $P(X,Y)$, with the goal of best labeling any future samples drawn iid from $P(X)$. This comparison suggests that transduction is a much easier type of inference than induction, but is this really the case? This paper provides a negative answer to this question, by proving the first known minimax lower bounds for transductive, realizable, binary classification. Our lower bounds show that $m$ should be at least $\Omega(d/\epsilon + \log(1/\delta)/\epsilon)$ when $\epsilon$-learning a concept class $\mathcal{H}$ of finite VC-dimension $d<\infty$ with confidence $1-\delta$, for all $m \leq u$. This result draws three important conclusions. First, general transduction is as hard as general induction, since both problems have $\Omega(d/m)$ minimax values. Second, the use of unlabeled data does not help general transduction, since supervised learning algorithms such as ERM and (Hanneke, 2015) match our transductive lower bounds while ignoring the unlabeled test set. Third, our transductive lower bounds imply lower bounds for semi-supervised learning, which add to the important discussion about the role of unlabeled data in machine learning.


Towards a Learning Theory of Cause-Effect Inference

arXiv.org Machine Learning

We pose causal inference as the problem of learning to classify probability distributions. In particular, we assume access to a collection $\{(S_i,l_i)\}_{i=1}^n$, where each $S_i$ is a sample drawn from the probability distribution of $X_i \times Y_i$, and $l_i$ is a binary label indicating whether "$X_i \to Y_i$" or "$X_i \leftarrow Y_i$". Given these data, we build a causal inference rule in two steps. First, we featurize each $S_i$ using the kernel mean embedding associated with some characteristic kernel. Second, we train a binary classifier on such embeddings to distinguish between causal directions. We present generalization bounds showing the statistical consistency and learning rates of the proposed approach, and provide a simple implementation that achieves state-of-the-art cause-effect inference. Furthermore, we extend our ideas to infer causal relationships between more than two variables.


Localized Complexities for Transductive Learning

arXiv.org Machine Learning

We show two novel concentration inequalities for suprema of empirical processes when sampling without replacement, which both take the variance of the functions into account. While these inequalities may potentially have broad applications in learning theory in general, we exemplify their significance by studying the transductive setting of learning theory. For which we provide the first excess risk bounds based on the localized complexity of the hypothesis class, which can yield fast rates of convergence also in the transductive learning setting. We give a preliminary analysis of the localized complexities for the prominent case of kernel classes.