Not enough data to create a plot.
Try a different view from the menu above.
Tiwana, Birjodh
LiRank: Industrial Large Scale Ranking Models at LinkedIn
Borisyuk, Fedor, Zhou, Mingzhou, Song, Qingquan, Zhu, Siyu, Tiwana, Birjodh, Parameswaran, Ganesh, Dangi, Siddharth, Hertel, Lars, Xiao, Qiang, Hou, Xiaochen, Ouyang, Yunbo, Gupta, Aman, Singh, Sheallika, Liu, Dan, Cheng, Hailing, Le, Lei, Hung, Jonathan, Keerthi, Sathiya, Wang, Ruoyan, Zhang, Fengyu, Kothari, Mohit, Zhu, Chen, Sun, Daqi, Dai, Yun, Luan, Xun, Zhu, Sirou, Wang, Zhiwei, Daftary, Neil, Shen, Qianqi, Jiang, Chengming, Wei, Haichao, Varshney, Maneesh, Ghoting, Amol, Ghosh, Souvik
We present LiRank, a large-scale ranking framework at LinkedIn that brings to production state-of-the-art modeling architectures and optimization methods. We unveil several modeling improvements, including Residual DCN, which adds attention and residual connections to the famous DCNv2 architecture. We share insights into combining and tuning SOTA architectures to create a unified model, including Dense Gating, Transformers and Residual DCN. We also propose novel techniques for calibration and describe how we productionalized deep learning based explore/exploit methods. To enable effective, production-grade serving of large ranking models, we detail how to train and compress models using quantization and vocabulary compression. We provide details about the deployment setup for large-scale use cases of Feed ranking, Jobs Recommendations, and Ads click-through rate (CTR) prediction. We summarize our learnings from various A/B tests by elucidating the most effective technical approaches. These ideas have contributed to relative metrics improvements across the board at LinkedIn: +0.5% member sessions in the Feed, +1.76% qualified job applications for Jobs search and recommendations, and +4.3% for Ads CTR. We hope this work can provide practical insights and solutions for practitioners interested in leveraging large-scale deep ranking systems.
MultiSlot ReRanker: A Generic Model-based Re-Ranking Framework in Recommendation Systems
Xiao, Qiang Charles, Muralidharan, Ajith, Tiwana, Birjodh, Jia, Johnson, Borisyuk, Fedor, Gupta, Aman, Woodard, Dawn
In this paper, we propose a generic model-based re-ranking framework, MultiSlot ReRanker, which simultaneously optimizes relevance, diversity, and freshness. Specifically, our Sequential Greedy Algorithm (SGA) is efficient enough (linear time complexity) for large-scale production recommendation engines. It achieved a lift of $+6\%$ to $ +10\%$ offline Area Under the receiver operating characteristic Curve (AUC) which is mainly due to explicitly modeling mutual influences among items of a list, and leveraging the second pass ranking scores of multiple objectives. In addition, we have generalized the offline replay theory to multi-slot re-ranking scenarios, with trade-offs among multiple objectives. The offline replay results can be further improved by Pareto Optimality. Moreover, we've built a multi-slot re-ranking simulator based on OpenAI Gym integrated with the Ray framework. It can be easily configured for different assumptions to quickly benchmark both reinforcement learning and supervised learning algorithms.