Plotting

 Titov, Ivan


Demons in the Detail: On Implementing Load Balancing Loss for Training Specialized Mixture-of-Expert Models

arXiv.org Artificial Intelligence

This paper revisits the implementation of $\textbf{L}$oad-$\textbf{b}$alancing $\textbf{L}$oss (LBL) when training Mixture-of-Experts (MoEs) models. Specifically, LBL for MoEs is defined as $N_E \sum_{i=1}^{N_E} f_i p_i$, where $N_E$ is the total number of experts, $f_i$ represents the frequency of expert $i$ being selected, and $p_i$ denotes the average gating score of the expert $i$. Existing MoE training frameworks usually employ the parallel training strategy so that $f_i$ and the LBL are calculated within a $\textbf{micro-batch}$ and then averaged across parallel groups. In essence, a micro-batch for training billion-scale LLMs normally contains very few sequences. So, the micro-batch LBL is almost at the sequence level, and the router is pushed to distribute the token evenly within each sequence. Under this strict constraint, even tokens from a domain-specific sequence ($\textit{e.g.}$, code) are uniformly routed to all experts, thereby inhibiting expert specialization. In this work, we propose calculating LBL using a $\textbf{global-batch}$ to loose this constraint. Because a global-batch contains much more diverse sequences than a micro-batch, which will encourage load balance at the corpus level. Specifically, we introduce an extra communication step to synchronize $f_i$ across micro-batches and then use it to calculate the LBL. Through experiments on training MoEs-based LLMs (up to $\textbf{42.8B}$ total parameters and $\textbf{400B}$ tokens), we surprisingly find that the global-batch LBL strategy yields excellent performance gains in both pre-training perplexity and downstream tasks. Our analysis reveals that the global-batch LBL also greatly improves the domain specialization of MoE experts.


Joint Localization and Activation Editing for Low-Resource Fine-Tuning

arXiv.org Artificial Intelligence

Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, are commonly used to adapt LLMs. However, the effectiveness of standard PEFT methods is limited in low-resource scenarios with only a few hundred examples. Recent advances in interpretability research have inspired the emergence of activation editing techniques, which modify the activations of specific model components. These methods, due to their extremely small parameter counts, show promise for small datasets. However, their performance is highly dependent on identifying the correct modules to edit and often lacks stability across different datasets. In this paper, we propose Joint Localization and Activation Editing (JoLA), a method that jointly learns (1) which heads in the Transformer to edit (2) whether the intervention should be additive, multiplicative, or both and (3) the intervention parameters themselves - the vectors applied as additive offsets or multiplicative scalings to the head output. Through evaluations on three benchmarks spanning commonsense reasoning, natural language understanding, and natural language generation, we demonstrate that JoLA consistently outperforms existing methods.


Language Agents Meet Causality -- Bridging LLMs and Causal World Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have recently shown great promise in planning and reasoning applications. These tasks demand robust systems, which arguably require a causal understanding of the environment. While LLMs can acquire and reflect common sense causal knowledge from their pretraining data, this information is often incomplete, incorrect, or inapplicable to a specific environment. In contrast, causal representation learning (CRL) focuses on identifying the underlying causal structure within a given environment. We propose a framework that integrates CRLs with LLMs to enable causally-aware reasoning and planning. This framework learns a causal world model, with causal variables linked to natural language expressions. This mapping provides LLMs with a flexible interface to process and generate descriptions of actions and states in text form. We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities. Our experiments demonstrate the effectiveness of the approach, with the causally-aware method outperforming LLM-based reasoners, especially for longer planning horizons. Large Language Models (LLMs) have emerged as powerful tools for a wide range of tasks, from natural language understanding to complex problem-solving (Brown et al., 2020; Radford et al., 2019; Liu et al., 2023b). Recent work has explored the use of LLMs as action agents for planning and reasoning tasks, showing promising results in improving task-specific, downstream performance (Ahn et al., 2022; Hao et al., 2023; Huang et al., 2023). These approaches primarily rely on the model's ability to extract common-sense causal information stated in its training data (Zečević et al., 2023). While LLMs can reflect general beliefs and correlations, this information may be incomplete, incorrect, or inapplicable in specific environments. This poses challenges for LLMs in novel or complex situations, particularly in dynamic environments where accurate modeling of action consequences is crucial (Valmeekam et al., 2023; Kambhampati et al., 2024).


What's New in My Data? Novelty Exploration via Contrastive Generation

arXiv.org Artificial Intelligence

Fine-tuning is widely used to adapt language models for specific goals, often leveraging real-world data such as patient records, customer-service interactions, or web content in languages not covered in pre-training. These datasets are typically massive, noisy, and often confidential, making their direct inspection challenging. However, understanding them is essential for guiding model deployment and informing decisions about data cleaning or suppressing any harmful behaviors learned during fine-tuning. In this study, we introduce the task of novelty discovery through generation, which aims to identify novel properties of a fine-tuning dataset by generating examples that illustrate these properties. Our approach, Contrastive Generative Exploration (CGE), assumes no direct access to the data but instead relies on a pre-trained model and the same model after fine-tuning. By contrasting the predictions of these two models, CGE can generate examples that highlight novel characteristics of the fine-tuning data. However, this simple approach may produce examples that are too similar to one another, failing to capture the full range of novel phenomena present in the dataset. We address this by introducing an iterative version of CGE, where the previously generated examples are used to update the pre-trained model, and this updated model is then contrasted with the fully fine-tuned model to generate the next example, promoting diversity in the generated outputs. Our experiments demonstrate the effectiveness of CGE in detecting novel content, such as toxic language, as well as new natural and programming languages. Furthermore, we show that CGE remains effective even when models are fine-tuned using differential privacy techniques.


Disentangling Textual and Acoustic Features of Neural Speech Representations

arXiv.org Artificial Intelligence

Neural speech models build deeply entangled internal representations, which capture a variety of features (e.g., fundamental frequency, loudness, syntactic category, or semantic content of a word) in a distributed encoding. This complexity makes it difficult to track the extent to which such representations rely on textual and acoustic information, or to suppress the encoding of acoustic features that may pose privacy risks (e.g., gender or speaker identity) in critical, real-world applications. In this paper, we build upon the Information Bottleneck principle to propose a disentanglement framework that separates complex speech representations into two distinct components: one encoding content (i.e., what can be transcribed as text) and the other encoding acoustic features relevant to a given downstream task. We apply and evaluate our framework to emotion recognition and speaker identification downstream tasks, quantifying the contribution of textual and acoustic features at each model layer. Additionally, we explore the application of our disentanglement framework as an attribution method to identify the most salient speech frame representations from both the textual and acoustic perspectives. The internal activation vectors of most modern deep learning systems, including Neural Speech Models (NSM) such as Wav2Vec2 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), and Whisper (Radford et al., 2022), are highly entangled. This means that distinct input characteristics - such as fundamental frequency, loudness, syntactic category, or semantic features of a spoken word--are not separated into individual dimensions within the model's latent space - but are instead intertwined within the same ones. Entanglement is a major obstacle for our ability to interpret and to intervene; disentanglement, to the extent that it is possible and even if imperfect, is therefore often highly desirable. For instance, when state-of-the-art NSMs are used in critical situations, we may want to be able to guarantee that information about the speaker's identity, gender, or health characteristics are not used in downstream applications. However, the entangled nature of the NSM's internal representation makes it difficult to surgically suppress such acoustic information.


Mitigating Copy Bias in In-Context Learning through Neuron Pruning

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated impressive few-shot in-context learning (ICL) abilities. Still, we show that they are sometimes prone to a `copying bias', where they copy answers from provided examples instead of learning the underlying patterns. In this work, we propose a novel and simple method to mitigate such copying bias. First, we create a synthetic task and use the Integrated Gradients method to identify neurons that prioritize copying over generalization. We demonstrate that pruning these neurons consistently improves performance across a diverse set of ICL tasks. We also show that our method is applicable across various LLM architectures, including Transformers and State-Space Models, without requiring modifications. In our analysis, we adopt a task-recognition perspective on ICL and examine task vectors (Hendel et al., 2023) induced by the model. We find that pruning enhances the quality of these vectors, suggesting that the pruned neurons previously hindered effective task recognition.


Post-hoc Reward Calibration: A Case Study on Length Bias

arXiv.org Artificial Intelligence

Reinforcement Learning from Human Feedback aligns the outputs of Large Language Models with human values and preferences. Central to this process is the reward model (RM), which translates human feedback into training signals for optimising LLM behaviour. However, RMs can develop biases by exploiting spurious correlations in their training data, such as favouring outputs based on length or style rather than true quality. These biases can lead to incorrect output rankings, sub-optimal model evaluations, and the amplification of undesirable behaviours in LLMs alignment. This paper addresses the challenge of correcting such biases without additional data and training, introducing the concept of Post-hoc Reward Calibration. We first propose an intuitive approach to estimate the bias term and, thus, remove it to approximate the underlying true reward. We then extend the approach to a more general and robust form with the Locally Weighted Regression. Focusing on the prevalent length bias, we validate our proposed approaches across three experimental settings, demonstrating consistent improvements: (1) a 3.11 average performance gain across 33 reward models on the RewardBench dataset; (2) enhanced alignment of RM rankings with GPT-4 evaluations and human preferences based on the AlpacaEval benchmark; and (3) improved Length-Controlled win rate of the RLHF process in multiple LLM--RM combinations. Our method is computationally efficient and generalisable to other types of bias and RMs, offering a scalable and robust solution for mitigating biases in LLM alignment. Our code and results are available at https://github.com/ZeroYuHuang/Reward-Calibration.


Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations

arXiv.org Artificial Intelligence

Models need appropriate inductive biases to effectively learn from small amounts of data and generalize systematically outside of the training distribution. While Transformers are highly versatile and powerful, they can still benefit from enhanced structural inductive biases for seq2seq tasks, especially those involving syntactic transformations, such as converting active to passive voice or semantic parsing. In this paper, we propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training to perform synthetically generated syntactic transformations of dependency trees given a description of the transformation. Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking, and also improves structural generalization for semantic parsing. Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token, and that the model can leverage these attention heads on downstream tasks.


Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection

arXiv.org Artificial Intelligence

The challenging decision often centers on whether to use a large LLM with better performance or a smaller one with reduced costs. This has motivated recent research in the optimisation of LLM calls. Either a cascading strategy is used, where a smaller LLM or both are called sequentially, or a routing strategy is used, where only one model is ever called. Both scenarios are dependent on a decision criterion which is typically implemented by an extra neural model. In this work, we propose a simpler solution; we use only the uncertainty of the generations of the small LLM as the decision criterion. We compare our approach with both cascading and routing strategies using three different pairs of pre-trained small and large LLMs, on nine different tasks and against approaches that require an additional neural model. Our experiments reveal this simple solution optimally balances cost and performance, outperforming existing methods on 25 out of 27 experimental setups.


Unlearning Reveals the Influential Training Data of Language Models

arXiv.org Artificial Intelligence

In order to enhance the performance of language models while mitigating the risks of generating harmful content, it is crucial to identify which training dataset affects the model's outputs. Ideally, we can measure the influence of each dataset by removing it from training; however, it is prohibitively expensive to retrain a model multiple times. This paper presents UnTrac, which estimates the influence of a training dataset by unlearning it from the trained model. UnTrac is extremely simple; each training dataset is unlearned by gradient ascent, and we evaluate how much the model's predictions change after unlearning. We empirically examine if our methods can assess the influence of pretraining datasets on generating toxic, biased, and untruthful content. Experimental results demonstrate that our method estimates their influence much more accurately than existing methods while requiring neither excessive memory space nor multiple model checkpoints.