Tianbao Yang
Improved Dynamic Regret for Non-degenerate Functions
Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, Zhi-Hua Zhou
Recently, there has been a growing research interest in the analysis of dynamic regret, which measures the performance of an online learner against a sequence of local minimizers. By exploiting the strong convexity, previous studies have shown that the dynamic regret can be upper bounded by the path-length of the comparator sequence. In this paper, we illustrate that the dynamic regret can be further improved by allowing the learner to query the gradient of the function multiple times, and meanwhile the strong convexity can be weakened to other non-degenerate conditions. Specifically, we introduce the squared path-length, which could be much smaller than the path-length, as a new regularity of the comparator sequence. When multiple gradients are accessible to the learner, we first demonstrate that the dynamic regret of strongly convex functions can be upper bounded by the minimum of the path-length and the squared path-length. We then extend our theoretical guarantee to functions that are semi-strongly convex or selfconcordant. To the best of our knowledge, this is the first time that semi-strong convexity and self-concordance are utilized to tighten the dynamic regret.
Adaptive Accelerated Gradient Converging Method under H\"{o}lderian Error Bound Condition
Mingrui Liu, Tianbao Yang
Recent studies have shown that proximal gradient (PG) method and accelerated gradient method (APG) with restarting can enjoy a linear convergence under a weaker condition than strong convexity, namely a quadratic growth condition (QGC). However, the faster convergence of restarting APG method relies on the potentially unknown constant in QGC to appropriately restart APG, which restricts its applicability. We address this issue by developing a novel adaptive gradient converging methods, i.e., leveraging the magnitude of proximal gradient as a criterion for restart and termination. Our analysis extends to a much more general condition beyond the QGC, namely the Hölderian error bound (HEB) condition. The key technique for our development is a novel synthesis of adaptive regularization and a conditional restarting scheme, which extends previous work focusing on strongly convex problems to a much broader family of problems. Furthermore, we demonstrate that our results have important implication and applications in machine learning: (i) if the objective function is coercive and semialgebraic, PG's convergence speed is essentially o(
Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter
Yi Xu, Qihang Lin, Tianbao Yang
Error bound, an inherent property of an optimization problem, has recently revived in the development of algorithms with improved global convergence without strong convexity. The most studied error bound is the quadratic error bound, which generalizes strong convexity and is satisfied by a large family of machine learning problems. Quadratic error bound have been leveraged to achieve linear convergence in many first-order methods including the stochastic variance reduced gradient (SVRG) method, which is one of the most important stochastic optimization methods in machine learning. However, the studies along this direction face the critical issue that the algorithms must depend on an unknown growth parameter (a generalization of strong convexity modulus) in the error bound. This parameter is difficult to estimate exactly and the algorithms choosing this parameter heuristically do not have theoretical convergence guarantee. To address this issue, we propose novel SVRG methods that automatically search for this unknown parameter on the fly of optimization while still obtain almost the same convergence rate as when this parameter is known. We also analyze the convergence property of SVRG methods under Hölderian error bound, which generalizes the quadratic error bound.
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions
Mingrui Liu, Xiaoxuan Zhang, Lijun Zhang, Rong Jin, Tianbao Yang
Error bound conditions (EBC) are properties that characterize the growth of an objective function when a point is moved away from the optimal set. They have recently received increasing attention for developing optimization algorithms with fast convergence. However, the studies of EBC in statistical learning are hitherto still limited. The main contributions of this paper are two-fold. First, we develop fast and intermediate rates of empirical risk minimization (ERM) under EBC for risk minimization with Lipschitz continuous, and smooth convex random functions. Second, we establish fast and intermediate rates of an efficient stochastic approximation (SA) algorithm for risk minimization with Lipschitz continuous random functions, which requires only one pass of n samples and adapts to EBC. For both approaches, the convergence rates span a full spectrum between Õ(1/ n) and Õ(1/n) depending on the power constant in EBC, and could be even faster than O(1/n) in special cases for ERM. Moreover, these convergence rates are automatically adaptive without using any knowledge of EBC.
Faster Online Learning of Optimal Threshold for Consistent F-measure Optimization
Xiaoxuan Zhang, Mingrui Liu, Xun Zhou, Tianbao Yang
In this paper, we consider online F-measure optimization (OFO). Unlike traditional performance metrics (e.g., classification error rate), F-measure is nondecomposable over training examples and is a non-convex function of model parameters, making it much more difficult to be optimized in an online fashion. Most existing results of OFO usually suffer from high memory/computational costs and/or lack statistical consistency guarantee for optimizing F-measure at the population level. To advance OFO, we propose an efficient online algorithm based on simultaneously learning a posterior probability of class and learning an optimal threshold by minimizing a stochastic strongly convex function with unknown strong convexity parameter. A key component of the proposed method is a novel stochastic algorithm with low memory and computational costs, which can enjoy a convergence rate of Õ(1/ n) for learning the optimal threshold under a mild condition on the convergence of the posterior probability, where n is the number of processed examples. It is provably faster than its predecessor based on a heuristic for updating the threshold. The experiments verify the efficiency of the proposed algorithm in comparison with state-of-the-art OFO algorithms.
Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter
Yi Xu, Qihang Lin, Tianbao Yang
Error bound, an inherent property of an optimization problem, has recently revived in the development of algorithms with improved global convergence without strong convexity. The most studied error bound is the quadratic error bound, which generalizes strong convexity and is satisfied by a large family of machine learning problems. Quadratic error bound have been leveraged to achieve linear convergence in many first-order methods including the stochastic variance reduced gradient (SVRG) method, which is one of the most important stochastic optimization methods in machine learning. However, the studies along this direction face the critical issue that the algorithms must depend on an unknown growth parameter (a generalization of strong convexity modulus) in the error bound. This parameter is difficult to estimate exactly and the algorithms choosing this parameter heuristically do not have theoretical convergence guarantee. To address this issue, we propose novel SVRG methods that automatically search for this unknown parameter on the fly of optimization while still obtain almost the same convergence rate as when this parameter is known. We also analyze the convergence property of SVRG methods under Hölderian error bound, which generalizes the quadratic error bound.