Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Thomas Unterthiner
Self-Normalizing Neural Networks
Günter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter
Deep Learning has revolutionized vision via convolutional neural networks (CNNs) and natural language processing via recurrent neural networks (RNNs). However, success stories of Deep Learning with standard feed-forward neural networks (FNNs) are rare. FNNs that perform well are typically shallow and, therefore cannot exploit many levels of abstract representations. We introduce self-normalizing neural networks (SNNs) to enable high-level abstract representations. While batch normalization requires explicit normalization, neuron activations of SNNs automatically converge towards zero mean and unit variance. The activation function of SNNs are "scaled exponential linear units" (SELUs), which induce self-normalizing properties.
RUDDER: Return Decomposition for Delayed Rewards
Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter, Sepp Hochreiter
We propose RUDDER, a novel reinforcement learning approach for delayed rewards in finite Markov decision processes (MDPs). In MDPs the Q-values are equal to the expected immediate reward plus the expected future rewards. The latter are related to bias problems in temporal difference (TD) learning and to high variance problems in Monte Carlo (MC) learning. Both problems are even more severe when rewards are delayed. RUDDER aims at making the expected future rewards zero, which simplifies Q-value estimation to computing the mean of the immediate reward. We propose the following two new concepts to push the expected future rewards toward zero.
RUDDER: Return Decomposition for Delayed Rewards
Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter, Sepp Hochreiter
We propose RUDDER, a novel reinforcement learning approach for delayed rewards in finite Markov decision processes (MDPs). In MDPs the Q-values are equal to the expected immediate reward plus the expected future rewards. The latter are related to bias problems in temporal difference (TD) learning and to high variance problems in Monte Carlo (MC) learning. Both problems are even more severe when rewards are delayed. RUDDER aims at making the expected future rewards zero, which simplifies Q-value estimation to computing the mean of the immediate reward. We propose the following two new concepts to push the expected future rewards toward zero.
Self-Normalizing Neural Networks
Günter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter
Deep Learning has revolutionized vision via convolutional neural networks (CNNs) and natural language processing via recurrent neural networks (RNNs). However, success stories of Deep Learning with standard feed-forward neural networks (FNNs) are rare. FNNs that perform well are typically shallow and, therefore cannot exploit many levels of abstract representations. We introduce self-normalizing neural networks (SNNs) to enable high-level abstract representations. While batch normalization requires explicit normalization, neuron activations of SNNs automatically converge towards zero mean and unit variance. The activation function of SNNs are "scaled exponential linear units" (SELUs), which induce self-normalizing properties.