Thodberg, Hans Henrik


Bayesian Backprop in Action: Pruning, Committees, Error Bars and an Application to Spectroscopy

Neural Information Processing Systems

MacKay's Bayesian framework for backpropagation is conceptually appealing as well as practical. It automatically adjusts the weight decay parameters during training, and computes the evidence for each trained network. The evidence is proportional to our belief in the model. In this paper, the framework is extended to pruned nets, leading to an Ockham Factor for "tuning the architecture to the data". A committee of networks, selected by their high evidence, is a natural Bayesian construction.


Bayesian Backprop in Action: Pruning, Committees, Error Bars and an Application to Spectroscopy

Neural Information Processing Systems

MacKay's Bayesian framework for backpropagation is conceptually appealing as well as practical. It automatically adjusts the weight decay parameters during training, and computes the evidence for each trained network. The evidence is proportional to our belief in the model. In this paper, the framework is extended to pruned nets, leading to an Ockham Factor for "tuning the architecture to the data". A committee of networks, selected by their high evidence, is a natural Bayesian construction.