Tengyu Ma
Matrix Completion has No Spurious Local Minimum
Rong Ge, Jason D. Lee, Tengyu Ma
Matrix completion is a basic machine learning problem that has wide applications, especially in collaborative filtering and recommender systems. Simple non-convex optimization algorithms are popular and effective in practice. Despite recent progress in proving various non-convex algorithms converge from a good initial point, it remains unclear why random or arbitrary initialization suffices in practice. We prove that the commonly used non-convex objective function for positive semidefinite matrix completion has no spurious local minima - all local minima must also be global. Therefore, many popular optimization algorithms such as (stochastic) gradient descent can provably solve positive semidefinite matrix completion with arbitrary initialization in polynomial time. The result can be generalized to the setting when the observed entries contain noise. We believe that our main proof strategy can be useful for understanding geometric properties of other statistical problems involving partial or noisy observations.
On the Optimization Landscape of Tensor Decompositions
Rong Ge, Tengyu Ma
Non-convex optimization with local search heuristics has been widely used in machine learning, achieving many state-of-art results. It becomes increasingly important to understand why they can work for these NP-hard problems on typical data. The landscape of many objective functions in learning has been conjectured to have the geometric property that "all local optima are (approximately) global optima", and thus they can be solved efficiently by local search algorithms. However, establishing such property can be very difficult. In this paper, we analyze the optimization landscape of the random over-complete tensor decomposition problem, which has many applications in unsupervised leaning, especially in learning latent variable models.