Not enough data to create a plot.
Try a different view from the menu above.
Teng, Mélisande
Predicting Species Occurrence Patterns from Partial Observations
Abdelwahed, Hager Radi, Teng, Mélisande, Rolnick, David
To address the interlinked biodiversity and climate crises, we need an understanding of where species occur and how these patterns are changing. However, observational data on most species remains very limited, and the amount of data available varies greatly between taxonomic groups. We introduce the problem of predicting species occurrence patterns given (a) satellite imagery, and (b) known information on the occurrence of other species. To evaluate algorithms on this task, we introduce SatButterfly, a dataset of satellite images, environmental data and observational data for butterflies, which is designed to pair with the existing SatBird dataset of bird observational data. To address this task, we propose a general model, R-Tran, for predicting species occurrence patterns that enables the use of partial observational data wherever found. We find that R-Tran outperforms other methods in predicting species encounter rates with partial information both within a taxon (birds) and across taxa (birds and butterflies). Our approach opens new perspectives to leveraging insights from species with abundant data to other species with scarce data, by modelling the ecosystems in which they co-occur.
ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods
Schmidt, Victor, Luccioni, Alexandra Sasha, Teng, Mélisande, Zhang, Tianyu, Reynaud, Alexia, Raghupathi, Sunand, Cosne, Gautier, Juraver, Adrien, Vardanyan, Vahe, Hernandez-Garcia, Alex, Bengio, Yoshua
Climate change is a major threat to humanity, and the actions required to prevent its catastrophic consequences include changes in both policy-making and individual behaviour. However, taking action requires understanding the effects of climate change, even though they may seem abstract and distant. Projecting the potential consequences of extreme climate events such as flooding in familiar places can help make the abstract impacts of climate change more concrete and encourage action. As part of a larger initiative to build a website that projects extreme climate events onto user-chosen photos, we present our solution to simulate photo-realistic floods on authentic images. To address this complex task in the absence of suitable training data, we propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation. In this paper, we describe the details of our framework, thoroughly evaluate components of our architecture and demonstrate that our model is capable of robustly generating photo-realistic flooding.