Goto

Collaborating Authors

 Tenenbaum, Joshua


Structured Priors for Structure Learning

arXiv.org Artificial Intelligence

Traditional approaches to Bayes net structure learning typically assume little regularity in graph structure other than sparseness. However, in many cases, we expect more systematicity: variables in real-world systems often group into classes that predict the kinds of probabilistic dependencies they participate in. Here we capture this form of prior knowledge in a hierarchical Bayesian framework, and exploit it to enable structure learning and type discovery from small datasets. Specifically, we present a nonparametric generative model for directed acyclic graphs as a prior for Bayes net structure learning. Our model assumes that variables come in one or more classes and that the prior probability of an edge existing between two variables is a function only of their classes. We derive an MCMC algorithm for simultaneous inference of the number of classes, the class assignments of variables, and the Bayes net structure over variables. For several realistic, sparse datasets, we show that the bias towards systematicity of connections provided by our model yields more accurate learned networks than a traditional, uniform prior approach, and that the classes found by our model are appropriate.


The Infinite Latent Events Model

arXiv.org Machine Learning

We present the Infinite Latent Events Model, a nonparametric hierarchical Bayesian distribution over infinite dimensional Dynamic Bayesian Networks with binary state representations and noisy-OR-like transitions. The distribution can be used to learn structure in discrete timeseries data by simultaneously inferring a set of latent events, which events fired at each timestep, and how those events are causally linked. We illustrate the model on a sound factorization task, a network topology identification task, and a video game task.