Plotting

 Teh, Yee Whye


Detecting Out-of-Distribution Inputs to Deep Generative Models Using a Test for Typicality

arXiv.org Machine Learning

Recent work has shown that deep generative models can assign higher likelihood to out-of-distribution data sets than to their training data. We posit that this phenomenon is caused by a mismatch between the model's typical set and its areas of high probability density. In-distribution inputs should reside in the former but not necessarily in the latter, as previous work has presumed. To determine whether or not inputs reside in the typical set, we propose a statistically principled, easy-to-implement test using the empirical distribution of model likelihoods. The test is model agnostic and widely applicable, only requiring that the likelihood can be computed or closely approximated. We report experiments showing that our procedure can successfully detect the out-of-distribution sets in several of the challenging cases reported by Nalisnick et al. (2019).


Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean Embeddings

arXiv.org Machine Learning

Current meta-learning approaches focus on learning functional representations of relationships between variables, i.e. on estimating conditional expectations in regression. In many applications, however, we are faced with conditional distributions which cannot be meaningfully summarized using expectation only (due to e.g. multimodality). Hence, we consider the problem of conditional density estimation in the meta-learning setting. We introduce a novel technique for meta-learning which combines neural representation and noise-contrastive estimation with the established literature of conditional mean embeddings into reproducing kernel Hilbert spaces. The method is validated on synthetic and real-world problems, demonstrating the utility of sharing learned representations across multiple conditional density estimation tasks.


Hijacking Malaria Simulators with Probabilistic Programming

arXiv.org Machine Learning

Epidemiology simulations have become a fundamental tool in the fight against the epidemics of various infectious diseases like AIDS and malaria. However, the complicated and stochastic nature of these simulators can mean their output is difficult to interpret, which reduces their usefulness to policymakers. In this paper, we introduce an approach that allows one to treat a large class of population-based epidemiology simulators as probabilistic generative models. This is achieved by hijacking the internal random number generator calls, through the use of a universal probabilistic programming system (PPS). In contrast to other methods, our approach can be easily retrofitted to simulators written in popular industrial programming frameworks. We demonstrate that our method can be used for interpretable introspection and inference, thus shedding light on black-box simulators. This reinstates much-needed trust between policymakers and evidence-based methods.


Meta reinforcement learning as task inference

arXiv.org Machine Learning

Humans achieve efficient learning by relying on prior knowledge about the structure of naturally occurring tasks. There has been considerable interest in designing reinforcement learning algorithms with similar properties. This includes several proposals to learn the learning algorithm itself, an idea also referred to as meta learning. One formal interpretation of this idea is in terms of a partially observable multi-task reinforcement learning problem in which information about the task is hidden from the agent. Although agents that solve partially observable environments can be trained from rewards alone, shaping an agent's memory with additional supervision has been shown to boost learning efficiency. It is thus natural to ask what kind of supervision, if any, facilitates meta-learning. Here we explore several choices and develop an architecture that separates learning of the belief about the unknown task from learning of the policy, and that can be used effectively with privileged information about the task during training. We show that this approach can be very effective at solving standard meta-RL environments, as well as a complex continuous control environment in which a simulated robot has to execute various movement sequences.


Meta-learning of Sequential Strategies

arXiv.org Machine Learning

In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.


Information asymmetry in KL-regularized RL

arXiv.org Machine Learning

Many real world tasks exhibit rich structure that is repeated across different parts of the state space or in time. In this work we study the possibility of leveraging such repeated structure to speed up and regularize learning. We start from the KL regularized expected reward objective which introduces an additional component, a default policy. Instead of relying on a fixed default policy, we learn it from data. But crucially, we restrict the amount of information the default policy receives, forcing it to learn reusable behaviours that help the policy learn faster. We formalize this strategy and discuss connections to information bottleneck approaches and to the variational EM algorithm. We present empirical results in both discrete and continuous action domains and demonstrate that, for certain tasks, learning a default policy alongside the policy can significantly speed up and improve learning.


Augmented Neural ODEs

arXiv.org Machine Learning

We show that Neural Ordinary Differential Equations (ODEs) learn representations that preserve the topology of the input space and prove that this implies the existence of functions Neural ODEs cannot represent. To address these limitations, we introduce Augmented Neural ODEs which, in addition to being more expressive models, are empirically more stable, generalize better and have a lower computational cost than Neural ODEs.


Meta-Learning surrogate models for sequential decision making

arXiv.org Machine Learning

Meta-learning methods leverage past experience to learn data-driven inductive biases from related problems, increasing learning efficiency on new tasks. This ability renders them particularly suitable for sequential decision making with limited experience. Within this problem family, we argue for the use of such approaches in the study of model-based approaches to Bayesian Optimisation, contextual bandits and Reinforcement Learning. We approach the problem by learning distributions over functions using Neural Processes (NPs), a recently introduced probabilistic meta-learning method. This allows the treatment of model uncertainty to tackle the exploration/exploitation dilemma. We show that NPs are suitable for sequential decision making on a diverse set of domains, including adversarial task search, recommender systems and model-based reinforcement learning.


Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

arXiv.org Machine Learning

As reinforcement learning agents are tasked with solving more challenging and diverse tasks, the ability to incorporate prior knowledge into the learning system and to exploit reusable structure in solution space is likely to become increasingly important. The KL-regularized expected reward objective constitutes one possible tool to this end. It introduces an additional component, a default or prior behavior, which can be learned alongside the policy and as such partially transforms the reinforcement learning problem into one of behavior modelling. In this work we consider the implications of this framework in cases where both the policy and default behavior are augmented with latent variables. We discuss how the resulting hierarchical structures can be used to implement different inductive biases and how their modularity can benefit transfer. Empirically we find that they can lead to faster learning and transfer on a range of continuous control tasks.


Variational Estimators for Bayesian Optimal Experimental Design

arXiv.org Machine Learning

Bayesian optimal experimental design (BOED) is a principled framework for making efficient use of limited experimental resources. Unfortunately, its applicability is hampered by the difficulty of obtaining accurate estimates of the expected information gain (EIG) of an experiment. To address this, we introduce several classes of fast EIG estimators suited to the experiment design context by building on ideas from variational inference and mutual information estimation. We show theoretically and empirically that these estimators can provide significant gains in speed and accuracy over previous approaches. We demonstrate the practicality of our approach via a number of experiments, including an adaptive experiment with human participants.