Plotting

 Teh, Nicholas


Temporal Fair Division of Indivisible Items

arXiv.org Artificial Intelligence

We study a fair division model where indivisible items arrive sequentially, and must be allocated immediately and irrevocably. Previous work on online fair division has shown impossibility results in achieving approximate envy-freeness under these constraints. In contrast, we consider an informed setting where the algorithm has complete knowledge of future items, and aim to ensure that the cumulative allocation at each round satisfies approximate envy-freeness -- which we define as temporal envy-freeness up to one item (TEF1). We focus on settings where items can be exclusively goods or exclusively chores. For goods, while TEF1 allocations may not always exist, we identify several special cases where they do -- two agents, two item types, generalized binary valuations, unimodal preferences -- and provide polynomial-time algorithms for these cases. We also prove that determining the existence of a TEF1 allocation is NP-hard. For chores, we establish analogous results for the special cases, but present a slightly weaker intractability result. We also establish the incompatibility between TEF1 and Pareto-optimality, with the implication that it is intractable to find a TEF1 allocation that maximizes any $p$-mean welfare, even for two agents.


Temporal Fairness in Multiwinner Voting

arXiv.org Artificial Intelligence

Multiwinner voting captures a wide variety of settings, from parliamentary elections in democratic systems to product placement in online shopping platforms. There is a large body of work dealing with axiomatic characterizations, computational complexity, and algorithmic analysis of multiwinner voting rules. Although many challenges remain, significant progress has been made in showing existence of fair and representative outcomes as well as efficient algorithmic solutions for many commonly studied settings. However, much of this work focuses on single-shot elections, even though in numerous real-world settings elections are held periodically and repeatedly. Hence, it is imperative to extend the study of multiwinner voting to temporal settings. Recently, there have been several efforts to address this challenge. However, these works are difficult to compare, as they model multi-period voting in very different ways. We propose a unified framework for studying temporal fairness in this domain, drawing connections with various existing bodies of work, and consolidating them within a general framework. We also identify gaps in existing literature, outline multiple opportunities for future work, and put forward a vision for the future of multiwinner voting in temporal settings.