Not enough data to create a plot.
Try a different view from the menu above.
Tavakkol, Sasan
The ParClusterers Benchmark Suite (PCBS): A Fine-Grained Analysis of Scalable Graph Clustering
Yu, Shangdi, Shi, Jessica, Meindl, Jamison, Eisenstat, David, Ju, Xiaoen, Tavakkol, Sasan, Dhulipala, Laxman, Łącki, Jakub, Mirrokni, Vahab, Shun, Julian
We introduce the ParClusterers Benchmark Suite (PCBS) -- a collection of highly scalable parallel graph clustering algorithms and benchmarking tools that streamline comparing different graph clustering algorithms and implementations. The benchmark includes clustering algorithms that target a wide range of modern clustering use cases, including community detection, classification, and dense subgraph mining. The benchmark toolkit makes it easy to run and evaluate multiple instances of different clustering algorithms, which can be useful for fine-tuning the performance of clustering on a given task, and for comparing different clustering algorithms based on different metrics of interest, including clustering quality and running time. Using PCBS, we evaluate a broad collection of real-world graph clustering datasets. Somewhat surprisingly, we find that the best quality results are obtained by algorithms that not included in many popular graph clustering toolkits. The PCBS provides a standardized way to evaluate and judge the quality-performance tradeoffs of the active research area of scalable graph clustering algorithms. We believe it will help enable fair, accurate, and nuanced evaluation of graph clustering algorithms in the future.
Gemini: A Family of Highly Capable Multimodal Models
Gemini Team, null, Anil, Rohan, Borgeaud, Sebastian, Wu, Yonghui, Alayrac, Jean-Baptiste, Yu, Jiahui, Soricut, Radu, Schalkwyk, Johan, Dai, Andrew M., Hauth, Anja, Millican, Katie, Silver, David, Petrov, Slav, Johnson, Melvin, Antonoglou, Ioannis, Schrittwieser, Julian, Glaese, Amelia, Chen, Jilin, Pitler, Emily, Lillicrap, Timothy, Lazaridou, Angeliki, Firat, Orhan, Molloy, James, Isard, Michael, Barham, Paul R., Hennigan, Tom, Lee, Benjamin, Viola, Fabio, Reynolds, Malcolm, Xu, Yuanzhong, Doherty, Ryan, Collins, Eli, Meyer, Clemens, Rutherford, Eliza, Moreira, Erica, Ayoub, Kareem, Goel, Megha, Tucker, George, Piqueras, Enrique, Krikun, Maxim, Barr, Iain, Savinov, Nikolay, Danihelka, Ivo, Roelofs, Becca, White, Anaïs, Andreassen, Anders, von Glehn, Tamara, Yagati, Lakshman, Kazemi, Mehran, Gonzalez, Lucas, Khalman, Misha, Sygnowski, Jakub, Frechette, Alexandre, Smith, Charlotte, Culp, Laura, Proleev, Lev, Luan, Yi, Chen, Xi, Lottes, James, Schucher, Nathan, Lebron, Federico, Rrustemi, Alban, Clay, Natalie, Crone, Phil, Kocisky, Tomas, Zhao, Jeffrey, Perz, Bartek, Yu, Dian, Howard, Heidi, Bloniarz, Adam, Rae, Jack W., Lu, Han, Sifre, Laurent, Maggioni, Marcello, Alcober, Fred, Garrette, Dan, Barnes, Megan, Thakoor, Shantanu, Austin, Jacob, Barth-Maron, Gabriel, Wong, William, Joshi, Rishabh, Chaabouni, Rahma, Fatiha, Deeni, Ahuja, Arun, Liu, Ruibo, Li, Yunxuan, Cogan, Sarah, Chen, Jeremy, Jia, Chao, Gu, Chenjie, Zhang, Qiao, Grimstad, Jordan, Hartman, Ale Jakse, Chadwick, Martin, Tomar, Gaurav Singh, Garcia, Xavier, Senter, Evan, Taropa, Emanuel, Pillai, Thanumalayan Sankaranarayana, Devlin, Jacob, Laskin, Michael, Casas, Diego de Las, Valter, Dasha, Tao, Connie, Blanco, Lorenzo, Badia, Adrià Puigdomènech, Reitter, David, Chen, Mianna, Brennan, Jenny, Rivera, Clara, Brin, Sergey, Iqbal, Shariq, Surita, Gabriela, Labanowski, Jane, Rao, Abhi, Winkler, Stephanie, Parisotto, Emilio, Gu, Yiming, Olszewska, Kate, Zhang, Yujing, Addanki, Ravi, Miech, Antoine, Louis, Annie, Shafey, Laurent El, Teplyashin, Denis, Brown, Geoff, Catt, Elliot, Attaluri, Nithya, Balaguer, Jan, Xiang, Jackie, Wang, Pidong, Ashwood, Zoe, Briukhov, Anton, Webson, Albert, Ganapathy, Sanjay, Sanghavi, Smit, Kannan, Ajay, Chang, Ming-Wei, Stjerngren, Axel, Djolonga, Josip, Sun, Yuting, Bapna, Ankur, Aitchison, Matthew, Pejman, Pedram, Michalewski, Henryk, Yu, Tianhe, Wang, Cindy, Love, Juliette, Ahn, Junwhan, Bloxwich, Dawn, Han, Kehang, Humphreys, Peter, Sellam, Thibault, Bradbury, James, Godbole, Varun, Samangooei, Sina, Damoc, Bogdan, Kaskasoli, Alex, Arnold, Sébastien M. R., Vasudevan, Vijay, Agrawal, Shubham, Riesa, Jason, Lepikhin, Dmitry, Tanburn, Richard, Srinivasan, Srivatsan, Lim, Hyeontaek, Hodkinson, Sarah, Shyam, Pranav, Ferret, Johan, Hand, Steven, Garg, Ankush, Paine, Tom Le, Li, Jian, Li, Yujia, Giang, Minh, Neitz, Alexander, Abbas, Zaheer, York, Sarah, Reid, Machel, Cole, Elizabeth, Chowdhery, Aakanksha, Das, Dipanjan, Rogozińska, Dominika, Nikolaev, Vitaly, Sprechmann, Pablo, Nado, Zachary, Zilka, Lukas, Prost, Flavien, He, Luheng, Monteiro, Marianne, Mishra, Gaurav, Welty, Chris, Newlan, Josh, Jia, Dawei, Allamanis, Miltiadis, Hu, Clara Huiyi, de Liedekerke, Raoul, Gilmer, Justin, Saroufim, Carl, Rijhwani, Shruti, Hou, Shaobo, Shrivastava, Disha, Baddepudi, Anirudh, Goldin, Alex, Ozturel, Adnan, Cassirer, Albin, Xu, Yunhan, Sohn, Daniel, Sachan, Devendra, Amplayo, Reinald Kim, Swanson, Craig, Petrova, Dessie, Narayan, Shashi, Guez, Arthur, Brahma, Siddhartha, Landon, Jessica, Patel, Miteyan, Zhao, Ruizhe, Villela, Kevin, Wang, Luyu, Jia, Wenhao, Rahtz, Matthew, Giménez, Mai, Yeung, Legg, Lin, Hanzhao, Keeling, James, Georgiev, Petko, Mincu, Diana, Wu, Boxi, Haykal, Salem, Saputro, Rachel, Vodrahalli, Kiran, Qin, James, Cankara, Zeynep, Sharma, Abhanshu, Fernando, Nick, Hawkins, Will, Neyshabur, Behnam, Kim, Solomon, Hutter, Adrian, Agrawal, Priyanka, Castro-Ros, Alex, Driessche, George van den, Wang, Tao, Yang, Fan, Chang, Shuo-yiin, Komarek, Paul, McIlroy, Ross, Lučić, Mario, Zhang, Guodong, Farhan, Wael, Sharman, Michael, Natsev, Paul, Michel, Paul, Cheng, Yong, Bansal, Yamini, Qiao, Siyuan, Cao, Kris, Shakeri, Siamak, Butterfield, Christina, Chung, Justin, Rubenstein, Paul Kishan, Agrawal, Shivani, Mensch, Arthur, Soparkar, Kedar, Lenc, Karel, Chung, Timothy, Pope, Aedan, Maggiore, Loren, Kay, Jackie, Jhakra, Priya, Wang, Shibo, Maynez, Joshua, Phuong, Mary, Tobin, Taylor, Tacchetti, Andrea, Trebacz, Maja, Robinson, Kevin, Katariya, Yash, Riedel, Sebastian, Bailey, Paige, Xiao, Kefan, Ghelani, Nimesh, Aroyo, Lora, Slone, Ambrose, Houlsby, Neil, Xiong, Xuehan, Yang, Zhen, Gribovskaya, Elena, Adler, Jonas, Wirth, Mateo, Lee, Lisa, Li, Music, Kagohara, Thais, Pavagadhi, Jay, Bridgers, Sophie, Bortsova, Anna, Ghemawat, Sanjay, Ahmed, Zafarali, Liu, Tianqi, Powell, Richard, Bolina, Vijay, Iinuma, Mariko, Zablotskaia, Polina, Besley, James, Chung, Da-Woon, Dozat, Timothy, Comanescu, Ramona, Si, Xiance, Greer, Jeremy, Su, Guolong, Polacek, Martin, Kaufman, Raphaël Lopez, Tokumine, Simon, Hu, Hexiang, Buchatskaya, Elena, Miao, Yingjie, Elhawaty, Mohamed, Siddhant, Aditya, Tomasev, Nenad, Xing, Jinwei, Greer, Christina, Miller, Helen, Ashraf, Shereen, Roy, Aurko, Zhang, Zizhao, Ma, Ada, Filos, Angelos, Besta, Milos, Blevins, Rory, Klimenko, Ted, Yeh, Chih-Kuan, Changpinyo, Soravit, Mu, Jiaqi, Chang, Oscar, Pajarskas, Mantas, Muir, Carrie, Cohen, Vered, Lan, Charline Le, Haridasan, Krishna, Marathe, Amit, Hansen, Steven, Douglas, Sholto, Samuel, Rajkumar, Wang, Mingqiu, Austin, Sophia, Lan, Chang, Jiang, Jiepu, Chiu, Justin, Lorenzo, Jaime Alonso, Sjösund, Lars Lowe, Cevey, Sébastien, Gleicher, Zach, Avrahami, Thi, Boral, Anudhyan, Srinivasan, Hansa, Selo, Vittorio, May, Rhys, Aisopos, Konstantinos, Hussenot, Léonard, Soares, Livio Baldini, Baumli, Kate, Chang, Michael B., Recasens, Adrià, Caine, Ben, Pritzel, Alexander, Pavetic, Filip, Pardo, Fabio, Gergely, Anita, Frye, Justin, Ramasesh, Vinay, Horgan, Dan, Badola, Kartikeya, Kassner, Nora, Roy, Subhrajit, Dyer, Ethan, Campos, Víctor, Tomala, Alex, Tang, Yunhao, Badawy, Dalia El, White, Elspeth, Mustafa, Basil, Lang, Oran, Jindal, Abhishek, Vikram, Sharad, Gong, Zhitao, Caelles, Sergi, Hemsley, Ross, Thornton, Gregory, Feng, Fangxiaoyu, Stokowiec, Wojciech, Zheng, Ce, Thacker, Phoebe, Ünlü, Çağlar, Zhang, Zhishuai, Saleh, Mohammad, Svensson, James, Bileschi, Max, Patil, Piyush, Anand, Ankesh, Ring, Roman, Tsihlas, Katerina, Vezer, Arpi, Selvi, Marco, Shevlane, Toby, Rodriguez, Mikel, Kwiatkowski, Tom, Daruki, Samira, Rong, Keran, Dafoe, Allan, FitzGerald, Nicholas, Gu-Lemberg, Keren, Khan, Mina, Hendricks, Lisa Anne, Pellat, Marie, Feinberg, Vladimir, Cobon-Kerr, James, Sainath, Tara, Rauh, Maribeth, Hashemi, Sayed Hadi, Ives, Richard, Hasson, Yana, Li, YaGuang, Noland, Eric, Cao, Yuan, Byrd, Nathan, Hou, Le, Wang, Qingze, Sottiaux, Thibault, Paganini, Michela, Lespiau, Jean-Baptiste, Moufarek, Alexandre, Hassan, Samer, Shivakumar, Kaushik, van Amersfoort, Joost, Mandhane, Amol, Joshi, Pratik, Goyal, Anirudh, Tung, Matthew, Brock, Andrew, Sheahan, Hannah, Misra, Vedant, Li, Cheng, Rakićević, Nemanja, Dehghani, Mostafa, Liu, Fangyu, Mittal, Sid, Oh, Junhyuk, Noury, Seb, Sezener, Eren, Huot, Fantine, Lamm, Matthew, De Cao, Nicola, Chen, Charlie, Elsayed, Gamaleldin, Chi, Ed, Mahdieh, Mahdis, Tenney, Ian, Hua, Nan, Petrychenko, Ivan, Kane, Patrick, Scandinaro, Dylan, Jain, Rishub, Uesato, Jonathan, Datta, Romina, Sadovsky, Adam, Bunyan, Oskar, Rabiej, Dominik, Wu, Shimu, Zhang, John, Vasudevan, Gautam, Leurent, Edouard, Alnahlawi, Mahmoud, Georgescu, Ionut, Wei, Nan, Zheng, Ivy, Chan, Betty, Rabinovitch, Pam G, Stanczyk, Piotr, Zhang, Ye, Steiner, David, Naskar, Subhajit, Azzam, Michael, Johnson, Matthew, Paszke, Adam, Chiu, Chung-Cheng, Elias, Jaume Sanchez, Mohiuddin, Afroz, Muhammad, Faizan, Miao, Jin, Lee, Andrew, Vieillard, Nino, Potluri, Sahitya, Park, Jane, Davoodi, Elnaz, Zhang, Jiageng, Stanway, Jeff, Garmon, Drew, Karmarkar, Abhijit, Dong, Zhe, Lee, Jong, Kumar, Aviral, Zhou, Luowei, Evens, Jonathan, Isaac, William, Chen, Zhe, Jia, Johnson, Levskaya, Anselm, Zhu, Zhenkai, Gorgolewski, Chris, Grabowski, Peter, Mao, Yu, Magni, Alberto, Yao, Kaisheng, Snaider, Javier, Casagrande, Norman, Suganthan, Paul, Palmer, Evan, Irving, Geoffrey, Loper, Edward, Faruqui, Manaal, Arkatkar, Isha, Chen, Nanxin, Shafran, Izhak, Fink, Michael, Castaño, Alfonso, Giannoumis, Irene, Kim, Wooyeol, Rybiński, Mikołaj, Sreevatsa, Ashwin, Prendki, Jennifer, Soergel, David, Goedeckemeyer, Adrian, Gierke, Willi, Jafari, Mohsen, Gaba, Meenu, Wiesner, Jeremy, Wright, Diana Gage, Wei, Yawen, Vashisht, Harsha, Kulizhskaya, Yana, Hoover, Jay, Le, Maigo, Li, Lu, Iwuanyanwu, Chimezie, Liu, Lu, Ramirez, Kevin, Khorlin, Andrey, Cui, Albert, LIN, Tian, Georgiev, Marin, Wu, Marcus, Aguilar, Ricardo, Pallo, Keith, Chakladar, Abhishek, Repina, Alena, Wu, Xihui, van der Weide, Tom, Ponnapalli, Priya, Kaplan, Caroline, Simsa, Jiri, Li, Shuangfeng, Dousse, Olivier, Yang, Fan, Piper, Jeff, Ie, Nathan, Lui, Minnie, Pasumarthi, Rama, Lintz, Nathan, Vijayakumar, Anitha, Thiet, Lam Nguyen, Andor, Daniel, Valenzuela, Pedro, Paduraru, Cosmin, Peng, Daiyi, Lee, Katherine, Zhang, Shuyuan, Greene, Somer, Nguyen, Duc Dung, Kurylowicz, Paula, Velury, Sarmishta, Krause, Sebastian, Hardin, Cassidy, Dixon, Lucas, Janzer, Lili, Choo, Kiam, Feng, Ziqiang, Zhang, Biao, Singhal, Achintya, Latkar, Tejasi, Zhang, Mingyang, Le, Quoc, Abellan, Elena Allica, Du, Dayou, McKinnon, Dan, Antropova, Natasha, Bolukbasi, Tolga, Keller, Orgad, Reid, David, Finchelstein, Daniel, Raad, Maria Abi, Crocker, Remi, Hawkins, Peter, Dadashi, Robert, Gaffney, Colin, Lall, Sid, Franko, Ken, Filonov, Egor, Bulanova, Anna, Leblond, Rémi, Yadav, Vikas, Chung, Shirley, Askham, Harry, Cobo, Luis C., Xu, Kelvin, Fischer, Felix, Xu, Jun, Sorokin, Christina, Alberti, Chris, Lin, Chu-Cheng, Evans, Colin, Zhou, Hao, Dimitriev, Alek, Forbes, Hannah, Banarse, Dylan, Tung, Zora, Liu, Jeremiah, Omernick, Mark, Bishop, Colton, Kumar, Chintu, Sterneck, Rachel, Foley, Ryan, Jain, Rohan, Mishra, Swaroop, Xia, Jiawei, Bos, Taylor, Cideron, Geoffrey, Amid, Ehsan, Piccinno, Francesco, Wang, Xingyu, Banzal, Praseem, Gurita, Petru, Noga, Hila, Shah, Premal, Mankowitz, Daniel J., Polozov, Alex, Kushman, Nate, Krakovna, Victoria, Brown, Sasha, Bateni, MohammadHossein, Duan, Dennis, Firoiu, Vlad, Thotakuri, Meghana, Natan, Tom, Mohananey, Anhad, Geist, Matthieu, Mudgal, Sidharth, Girgin, Sertan, Li, Hui, Ye, Jiayu, Roval, Ofir, Tojo, Reiko, Kwong, Michael, Lee-Thorp, James, Yew, Christopher, Yuan, Quan, Bagri, Sumit, Sinopalnikov, Danila, Ramos, Sabela, Mellor, John, Sharma, Abhishek, Severyn, Aliaksei, Lai, Jonathan, Wu, Kathy, Cheng, Heng-Tze, Miller, David, Sonnerat, Nicolas, Vnukov, Denis, Greig, Rory, Beattie, Jennifer, Caveness, Emily, Bai, Libin, Eisenschlos, Julian, Korchemniy, Alex, Tsai, Tomy, Jasarevic, Mimi, Kong, Weize, Dao, Phuong, Zheng, Zeyu, Liu, Frederick, Yang, Fan, Zhu, Rui, Geller, Mark, Teh, Tian Huey, Sanmiya, Jason, Gladchenko, Evgeny, Trdin, Nejc, Sozanschi, Andrei, Toyama, Daniel, Rosen, Evan, Tavakkol, Sasan, Xue, Linting, Elkind, Chen, Woodman, Oliver, Carpenter, John, Papamakarios, George, Kemp, Rupert, Kafle, Sushant, Grunina, Tanya, Sinha, Rishika, Talbert, Alice, Goyal, Abhimanyu, Wu, Diane, Owusu-Afriyie, Denese, Du, Cosmo, Thornton, Chloe, Pont-Tuset, Jordi, Narayana, Pradyumna, Li, Jing, Fatehi, Sabaer, Wieting, John, Ajmeri, Omar, Uria, Benigno, Zhu, Tao, Ko, Yeongil, Knight, Laura, Héliou, Amélie, Niu, Ning, Gu, Shane, Pang, Chenxi, Tran, Dustin, Li, Yeqing, Levine, Nir, Stolovich, Ariel, Kalb, Norbert, Santamaria-Fernandez, Rebeca, Goenka, Sonam, Yustalim, Wenny, Strudel, Robin, Elqursh, Ali, Lakshminarayanan, Balaji, Deck, Charlie, Upadhyay, Shyam, Lee, Hyo, Dusenberry, Mike, Li, Zonglin, Wang, Xuezhi, Levin, Kyle, Hoffmann, Raphael, Holtmann-Rice, Dan, Bachem, Olivier, Yue, Summer, Arora, Sho, Malmi, Eric, Mirylenka, Daniil, Tan, Qijun, Koh, Christy, Yeganeh, Soheil Hassas, Põder, Siim, Zheng, Steven, Pongetti, Francesco, Tariq, Mukarram, Sun, Yanhua, Ionita, Lucian, Seyedhosseini, Mojtaba, Tafti, Pouya, Kotikalapudi, Ragha, Liu, Zhiyu, Gulati, Anmol, Liu, Jasmine, Ye, Xinyu, Chrzaszcz, Bart, Wang, Lily, Sethi, Nikhil, Li, Tianrun, Brown, Ben, Singh, Shreya, Fan, Wei, Parisi, Aaron, Stanton, Joe, Kuang, Chenkai, Koverkathu, Vinod, Choquette-Choo, Christopher A., Li, Yunjie, Lu, TJ, Ittycheriah, Abe, Shroff, Prakash, Sun, Pei, Varadarajan, Mani, Bahargam, Sanaz, Willoughby, Rob, Gaddy, David, Dasgupta, Ishita, Desjardins, Guillaume, Cornero, Marco, Robenek, Brona, Mittal, Bhavishya, Albrecht, Ben, Shenoy, Ashish, Moiseev, Fedor, Jacobsson, Henrik, Ghaffarkhah, Alireza, Rivière, Morgane, Walton, Alanna, Crepy, Clément, Parrish, Alicia, Liu, Yuan, Zhou, Zongwei, Farabet, Clement, Radebaugh, Carey, Srinivasan, Praveen, van der Salm, Claudia, Fidjeland, Andreas, Scellato, Salvatore, Latorre-Chimoto, Eri, Klimczak-Plucińska, Hanna, Bridson, David, de Cesare, Dario, Hudson, Tom, Mendolicchio, Piermaria, Walker, Lexi, Morris, Alex, Penchev, Ivo, Mauger, Matthew, Guseynov, Alexey, Reid, Alison, Odoom, Seth, Loher, Lucia, Cotruta, Victor, Yenugula, Madhavi, Grewe, Dominik, Petrushkina, Anastasia, Duerig, Tom, Sanchez, Antonio, Yadlowsky, Steve, Shen, Amy, Globerson, Amir, Kurzrok, Adam, Webb, Lynette, Dua, Sahil, Li, Dong, Lahoti, Preethi, Bhupatiraju, Surya, Hurt, Dan, Qureshi, Haroon, Agarwal, Ananth, Shani, Tomer, Eyal, Matan, Khare, Anuj, Belle, Shreyas Rammohan, Wang, Lei, Tekur, Chetan, Kale, Mihir Sanjay, Wei, Jinliang, Sang, Ruoxin, Saeta, Brennan, Liechty, Tyler, Sun, Yi, Zhao, Yao, Lee, Stephan, Nayak, Pandu, Fritz, Doug, Vuyyuru, Manish Reddy, Aslanides, John, Vyas, Nidhi, Wicke, Martin, Ma, Xiao, Bilal, Taylan, Eltyshev, Evgenii, Balle, Daniel, Martin, Nina, Cate, Hardie, Manyika, James, Amiri, Keyvan, Kim, Yelin, Xiong, Xi, Kang, Kai, Luisier, Florian, Tripuraneni, Nilesh, Madras, David, Guo, Mandy, Waters, Austin, Wang, Oliver, Ainslie, Joshua, Baldridge, Jason, Zhang, Han, Pruthi, Garima, Bauer, Jakob, Yang, Feng, Mansour, Riham, Gelman, Jason, Xu, Yang, Polovets, George, Liu, Ji, Cai, Honglong, Chen, Warren, Sheng, XiangHai, Xue, Emily, Ozair, Sherjil, Yu, Adams, Angermueller, Christof, Li, Xiaowei, Wang, Weiren, Wiesinger, Julia, Koukoumidis, Emmanouil, Tian, Yuan, Iyer, Anand, Gurumurthy, Madhu, Goldenson, Mark, Shah, Parashar, Blake, MK, Yu, Hongkun, Urbanowicz, Anthony, Palomaki, Jennimaria, Fernando, Chrisantha, Brooks, Kevin, Durden, Ken, Mehta, Harsh, Momchev, Nikola, Rahimtoroghi, Elahe, Georgaki, Maria, Raul, Amit, Ruder, Sebastian, Redshaw, Morgan, Lee, Jinhyuk, Jalan, Komal, Li, Dinghua, Perng, Ginger, Hechtman, Blake, Schuh, Parker, Nasr, Milad, Chen, Mia, Milan, Kieran, Mikulik, Vladimir, Strohman, Trevor, Franco, Juliana, Green, Tim, Hassabis, Demis, Kavukcuoglu, Koray, Dean, Jeffrey, Vinyals, Oriol
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.
Two-Step Active Learning for Instance Segmentation with Uncertainty and Diversity Sampling
Yu, Ke, Albro, Stephen, DeSalvo, Giulia, Kothawade, Suraj, Rashwan, Abdullah, Tavakkol, Sasan, Batmanghelich, Kayhan, Yin, Xiaoqi
Training high-quality instance segmentation models requires an abundance of labeled images with instance masks and classifications, which is often expensive to procure. Active learning addresses this challenge by striving for optimum performance with minimal labeling cost by selecting the most informative and representative images for labeling. Despite its potential, active learning has been less explored in instance segmentation compared to other tasks like image classification, which require less labeling. In this study, we propose a post-hoc active learning algorithm that integrates uncertainty-based sampling with diversity-based sampling. Our proposed algorithm is not only simple and easy to implement, but it also delivers superior performance on various datasets. Its practical application is demonstrated on a real-world overhead imagery dataset, where it increases the labeling efficiency fivefold.
Agile Modeling: From Concept to Classifier in Minutes
Stretcu, Otilia, Vendrow, Edward, Hata, Kenji, Viswanathan, Krishnamurthy, Ferrari, Vittorio, Tavakkol, Sasan, Zhou, Wenlei, Avinash, Aditya, Luo, Enming, Alldrin, Neil Gordon, Bateni, MohammadHossein, Berger, Gabriel, Bunner, Andrew, Lu, Chun-Ta, Rey, Javier A, DeSalvo, Giulia, Krishna, Ranjay, Fuxman, Ariel
The application of computer vision to nuanced subjective use cases is growing. While crowdsourcing has served the vision community well for most objective tasks (such as labeling a "zebra"), it now falters on tasks where there is substantial subjectivity in the concept (such as identifying "gourmet tuna"). However, empowering any user to develop a classifier for their concept is technically difficult: users are neither machine learning experts, nor have the patience to label thousands of examples. In reaction, we introduce the problem of Agile Modeling: the process of turning any subjective visual concept into a computer vision model through a real-time user-in-the-loop interactions. We instantiate an Agile Modeling prototype for image classification and show through a user study (N=14) that users can create classifiers with minimal effort under 30 minutes. We compare this user driven process with the traditional crowdsourcing paradigm and find that the crowd's notion often differs from that of the user's, especially as the concepts become more subjective. Finally, we scale our experiments with simulations of users training classifiers for ImageNet21k categories to further demonstrate the efficacy.
An Automatic Approach for Generating Rich, Linked Geo-Metadata from Historical Map Images
Li, Zekun, Chiang, Yao-Yi, Tavakkol, Sasan, Shbita, Basel, Uhl, Johannes H., Leyk, Stefan, Knoblock, Craig A.
Historical maps contain detailed geographic information difficult to find elsewhere covering long-periods of time (e.g., 125 years for the historical topographic maps in the US). However, these maps typically exist as scanned images without searchable metadata. Existing approaches making historical maps searchable rely on tedious manual work (including crowd-sourcing) to generate the metadata (e.g., geolocations and keywords). Optical character recognition (OCR) software could alleviate the required manual work, but the recognition results are individual words instead of location phrases (e.g., "Black" and "Mountain" vs. "Black Mountain"). This paper presents an end-to-end approach to address the real-world problem of finding and indexing historical map images. This approach automatically processes historical map images to extract their text content and generates a set of metadata that is linked to large external geospatial knowledge bases. The linked metadata in the RDF (Resource Description Framework) format support complex queries for finding and indexing historical maps, such as retrieving all historical maps covering mountain peaks higher than 1,000 meters in California. We have implemented the approach in a system called mapKurator. We have evaluated mapKurator using historical maps from several sources with various map styles, scales, and coverage. Our results show significant improvement over the state-of-the-art methods. The code has been made publicly available as modules of the Kartta Labs project at https://github.com/kartta-labs/Project.
Kartta Labs: Collaborative Time Travel
Tavakkol, Sasan, Han, Feng, Mayer, Brandon, Phillips, Mark, Shahabi, Cyrus, Chiang, Yao-Yi, Kiveris, Raimondas
We introduce the modular and scalable design of Kartta Labs, an open source, open data, and scalable system for virtually reconstructing cities from historical maps and photos. Kartta Labs relies on crowdsourcing and artificial intelligence consisting of two major modules: Maps and 3D models. Each module, in turn, consists of sub-modules that enable the system to reconstruct a city from historical maps and photos. The result is a spatiotemporal reference that can be used to integrate various collected data (curated, sensed, or crowdsourced) for research, education, and entertainment purposes. The system empowers the users to experience collaborative time travel such that they work together to reconstruct the past and experience it on an open source and open data platform.