Plotting

 Tarr, Michael


3D View Prediction Models of the Dorsal Visual Stream

arXiv.org Artificial Intelligence

Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural responses in dorsal visual areas, we trained a self-supervised geometry-aware recurrent neural network (GRNN) to predict novel camera views using a 3D feature memory. We compared GRNN to self-supervised baseline models that have been shown to align well with ventral regions using the large-scale fMRI Natural Scenes Dataset (NSD). We found that while the baseline models accounted better for ventral brain regions, GRNN accounted for a greater proportion of variance in dorsal brain regions. Our findings demonstrate the potential for using task-relevant models to probe representational differences across visual streams.


A state-space model of cross-region dynamic connectivity in MEG/EEG

Neural Information Processing Systems

Cross-region dynamic connectivity, which describes spatio-temporal dependence of neural activity among multiple brain regions of interest (ROIs), can provide important information for understanding cognition. For estimating such connectivity, magnetoencephalography (MEG) and electroencephalography (EEG) are well-suited tools because of their millisecond temporal resolution. However, localizing source activity in the brain requires solving an under-determined linear problem. In typical two-step approaches, researchers first solve the linear problem with general priors assuming independence across ROIs, and secondly quantify cross-region connectivity. In this work, we propose a one-step state-space model to improve estimation of dynamic connectivity. The model treats the mean activity in individual ROIs as the state variable, and describes non-stationary dynamic dependence across ROIs using time-varying auto-regression. Compared with a two-step method, which first obtains the commonly used minimum-norm estimates of source activity, and then fits the auto-regressive model, our state-space model yielded smaller estimation errors on simulated data where the model assumptions held. When applied on empirical MEG data from one participant in a scene-processing experiment, our state-space model also demonstrated intriguing preliminary results, indicating leading and lagged linear dependence between the early visual cortex and a higher-level scene-sensitive region, which could reflect feed-forward and feedback information flow within the visual cortex during scene processing.