Goto

Collaborating Authors

 Tarlow, Daniel


Interpreting Graph Cuts as a Max-Product Algorithm

arXiv.org Machine Learning

The maximum a posteriori (MAP) configuration of binary variable models with submodular graph-structured energy functions can be found efficiently and exactly by graph cuts. Max-product belief propagation (MP) has been shown to be suboptimal on this class of energy functions by a canonical counterexample where MP converges to a suboptimal fixed point (Kulesza & Pereira, 2008). In this work, we show that under a particular scheduling and damping scheme, MP is equivalent to graph cuts, and thus optimal. We explain the apparent contradiction by showing that with proper scheduling and damping, MP always converges to an optimal fixed point. Thus, the canonical counterexample only shows the suboptimality of MP with a particular suboptimal choice of schedule and damping. With proper choices, MP is optimal.


Using Combinatorial Optimization within Max-Product Belief Propagation

Neural Information Processing Systems

In general, the problem of computing a maximum a posteriori (MAP) assignment in a Markov random field (MRF) is computationally intractable. However, in certain subclasses of MRF, an optimal or close-to-optimal assignment can be found very efficiently using combinatorial optimization algorithms: certain MRFs with mutual exclusion constraints can be solved using bipartite matching, and MRFs with regular potentials can be solved using minimum cut methods. However, these solutions do not apply to the many MRFs that contain such tractable components as sub-networks, but also other non-complying potentials.


Using Combinatorial Optimization within Max-Product Belief Propagation

Neural Information Processing Systems

In general, the problem of computing a maximum a posteriori (MAP) assignment in a Markov random eld (MRF) is computationally intractable. However, in certain subclasses of MRF, an optimal or close-to-optimal assignment can be found very ef ciently using combinatorial optimization algorithms: certain MRFs with mutual exclusion constraints can be solved using bipartite matching, and MRFs with regular potentials can be solved using minimum cut methods. However, these solutions do not apply to the many MRFs that contain such tractable components as sub-networks, but also other non-complying potentials.