Tang, Yun
Named Entity Detection and Injection for Direct Speech Translation
Gaido, Marco, Tang, Yun, Kulikov, Ilia, Huang, Rongqing, Gong, Hongyu, Inaguma, Hirofumi
In a sentence, certain words are critical for its semantic. Among them, named entities (NEs) are notoriously challenging for neural models. Despite their importance, their accurate handling has been neglected in speech-to-text (S2T) translation research, and recent work has shown that S2T models perform poorly for locations and notably person names, whose spelling is challenging unless known in advance. In this work, we explore how to leverage dictionaries of NEs known to likely appear in a given context to improve S2T model outputs. Our experiments show that we can reliably detect NEs likely present in an utterance starting from S2T encoder outputs. Indeed, we demonstrate that the current detection quality is sufficient to improve NE accuracy in the translation with a 31% reduction in person name errors.
FLYOVER: A Model-Driven Method to Generate Diverse Highway Interchanges for Autonomous Vehicle Testing
Zhou, Yuan, Lin, Gengjie, Tang, Yun, Yang, Kairui, Jing, Wei, Zhang, Ping, Chen, Junbo, Gong, Liang, Liu, Yang
It has become a consensus that autonomous vehicles (AVs) will first be widely deployed on highways. However, the complexity of highway interchanges becomes the bottleneck for deploying AVs. An AV should be sufficiently tested under different highway interchanges, which is still challenging due to the lack of available datasets containing diverse highway interchanges. In this paper, we propose a model-driven method, FLYOVER, to generate a dataset consisting of diverse interchanges with measurable diversity coverage. First, FLYOVER proposes a labeled digraph to model the topology of an interchange. Second, FLYOVER takes real-world interchanges as input to guarantee topology practicality and extracts different topology equivalence classes by classifying the corresponding topology models. Third, for each topology class, FLYOVER identifies the corresponding geometrical features for the ramps and generates concrete interchanges using k-way combinatorial coverage and differential evolution. To illustrate the diversity and applicability of the generated interchange dataset, we test the built-in traffic flow control algorithm in SUMO and the fuel-optimization trajectory tracking algorithm deployed to Alibaba's autonomous trucks on the dataset. The results show that except for the geometrical difference, the interchanges are diverse in throughput and fuel consumption under the traffic flow control and trajectory tracking algorithms, respectively.
A Survey on Scenario-Based Testing for Automated Driving Systems in High-Fidelity Simulation
Zhong, Ziyuan, Tang, Yun, Zhou, Yuan, Neves, Vania de Oliveira, Liu, Yang, Ray, Baishakhi
Automated Driving Systems (ADSs) have seen rapid progress in recent years. To ensure the safety and reliability of these systems, extensive testings are being conducted before their future mass deployment. Testing the system on the road is the closest to real-world and desirable approach, but it is incredibly costly. Also, it is infeasible to cover rare corner cases using such real-world testing. Thus, a popular alternative is to evaluate an ADS's performance in some well-designed challenging scenarios, a.k.a. scenario-based testing. High-fidelity simulators have been widely used in this setting to maximize flexibility and convenience in testing what-if scenarios. Although many works have been proposed offering diverse frameworks/methods for testing specific systems, the comparisons and connections among these works are still missing. To bridge this gap, in this work, we provide a generic formulation of scenario-based testing in high-fidelity simulation and conduct a literature review on the existing works. We further compare them and present the open challenges as well as potential future research directions.
Pay Better Attention to Attention: Head Selection in Multilingual and Multi-Domain Sequence Modeling
Gong, Hongyu, Tang, Yun, Pino, Juan, Li, Xian
Multi-head attention has each of the attention heads collect salient information from different parts of an input sequence, making it a powerful mechanism for sequence modeling. Multilingual and multi-domain learning are common scenarios for sequence modeling, where the key challenge is to maximize positive transfer and mitigate negative transfer across languages and domains. In this paper, we find that non-selective attention sharing is sub-optimal for achieving good generalization across all languages and domains. We further propose attention sharing strategies to facilitate parameter sharing and specialization in multilingual and multi-domain sequence modeling. Our approach automatically learns shared and specialized attention heads for different languages and domains to mitigate their interference. Evaluated in various tasks including speech recognition, text-to-text and speech-to-text translation, the proposed attention sharing strategies consistently bring gains to sequence models built upon multi-head attention. For speech-to-text translation, our approach yields an average of $+2.0$ BLEU over $13$ language directions in multilingual setting and $+2.0$ BLEU over $3$ domains in multi-domain setting.
Relation Module for Non-answerable Prediction on Question Answering
Huang, Kevin, Tang, Yun, Huang, Jing, He, Xiaodong, Zhou, Bowen
Machine reading comprehension(MRC) has attracted significant amounts of research attention recently, due to an increase of challenging reading comprehension datasets. In this paper, we aim to improve a MRC model's ability to determine whether a question has an answer in a given context (e.g. the recently proposed SQuAD 2.0 task). Our solution is a relation module that is adaptable to any MRC model. The relation module consists of both semantic extraction and relational information. We first extract high level semantics as objects from both question and context with multi-head self-attentive pooling. These semantic objects are then passed to a relation network, which generates relationship scores for each object pair in a sentence. These scores are used to determine whether a question is non-answerable. We test the relation module on the SQuAD 2.0 dataset using both BiDAF and BERT models as baseline readers. We obtain 1.8% gain of F1 on top of the BiDAF reader, and 1.0% on top of the BERT base model. These results show the effectiveness of our relation module on MRC
End-to-end Structure-Aware Convolutional Networks for Knowledge Base Completion
Shang, Chao, Tang, Yun, Huang, Jing, Bi, Jinbo, He, Xiaodong, Zhou, Bowen
Knowledge graph embedding has been an active research topic for knowledge base completion, with progressive improvement from the initial TransE, TransH, DistMult et al to the current state-of-the-art ConvE. ConvE uses 2D convolution over embeddings and multiple layers of nonlinear features to model knowledge graphs. The model can be efficiently trained and scalable to large knowledge graphs. However, there is no structure enforcement in the embedding space of ConvE. The recent graph convolutional network (GCN) provides another way of learning graph node embedding by successfully utilizing graph connectivity structure. In this work, we propose a novel end-to-end Structure-Aware Convolutional Network (SACN) that takes the benefit of GCN and ConvE together. SACN consists of an encoder of a weighted graph convolutional network (WGCN), and a decoder of a convolutional network called Conv-TransE. WGCN utilizes knowledge graph node structure, node attributes and edge relation types. It has learnable weights that adapt the amount of information from neighbors used in local aggregation, leading to more accurate embeddings of graph nodes. Node attributes in the graph are represented as additional nodes in the WGCN. The decoder Conv-TransE enables the state-of-the-art ConvE to be translational between entities and relations while keeps the same link prediction performance as ConvE. We demonstrate the effectiveness of the proposed SACN on standard FB15k-237 and WN18RR datasets, and it gives about 10% relative improvement over the state-of-the-art ConvE in terms of HITS@1, HITS@3 and HITS@10.