Plotting

 Tang, Xunzhu


Moto: Enhancing Embedding with Multiple Joint Factors for Chinese Text Classification

arXiv.org Artificial Intelligence

Recently, language representation techniques have achieved great performances in text classification. However, most existing representation models are specifically designed for English materials, which may fail in Chinese because of the huge difference between these two languages. Actually, few existing methods for Chinese text classification process texts at a single level. However, as a special kind of hieroglyphics, radicals of Chinese characters are good semantic carriers. In addition, Pinyin codes carry the semantic of tones, and Wubi reflects the stroke structure information, \textit{etc}. Unfortunately, previous researches neglected to find an effective way to distill the useful parts of these four factors and to fuse them. In our works, we propose a novel model called Moto: Enhancing Embedding with \textbf{M}ultiple J\textbf{o}int Fac\textbf{to}rs. Specifically, we design an attention mechanism to distill the useful parts by fusing the four-level information above more effectively. We conduct extensive experiments on four popular tasks. The empirical results show that our Moto achieves SOTA 0.8316 ($F_1$-score, 2.11\% improvement) on Chinese news titles, 96.38 (1.24\% improvement) on Fudan Corpus and 0.9633 (3.26\% improvement) on THUCNews.


MetaTPTrans: A Meta Learning Approach for Multilingual Code Representation Learning

arXiv.org Artificial Intelligence

Representation learning of source code is essential for applying machine learning to software engineering tasks. Learning code representation from a multilingual source code dataset has been shown to be more effective than learning from single-language datasets separately, since more training data from multilingual dataset improves the model's ability to extract language-agnostic information from source code. However, existing multilingual training overlooks the language-specific information which is crucial for modeling source code across different programming languages, while only focusing on learning a unified model with shared parameters among different languages for language-agnostic information modeling. To address this problem, we propose MetaTPTrans, a meta learning approach for multilingual code representation learning. MetaTPTrans generates different parameters for the feature extractor according to the specific programming language type of the input code snippet, enabling the model to learn both language-agnostic and language-specific information with dynamic parameters in the feature extractor. We conduct experiments on the code summarization and code completion tasks to verify the effectiveness of our approach. The results demonstrate the superiority of our approach with significant improvements on state-of-the-art baselines.