Goto

Collaborating Authors

 Tang, Xiangru


Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data?

arXiv.org Artificial Intelligence

Despite the power of Large Language Models (LLMs) like GPT-4, they still struggle with tasks that require generating complex, structured outputs. In this study, we assess the capability of Current LLMs in generating complex structured data and propose a structure-aware fine-tuning approach as a solution to improve this ability. To perform a comprehensive evaluation, we propose Struc-Bench, include five representative LLMs (i.e., GPT-NeoX 20B, GPT-3.5, GPT-4, and Vicuna) and evaluate them on our carefully constructed datasets spanning raw text, HTML, and LaTeX tables. Based on our analysis of current model performance, we identify specific common formatting errors and areas of potential improvement. To address complex formatting requirements, we utilize FormatCoT (Chain-of-Thought) to generate format instructions from target outputs. Our experiments show that our structure-aware fine-tuning method, when applied to LLaMA-7B, significantly improves adherence to natural language constraints, outperforming other evaluated LLMs. Based on these results, we present an ability map of model capabilities from six dimensions (i.e., coverage, formatting, reasoning, comprehension, pragmatics, and hallucination). This map highlights the weaknesses of LLMs in handling complex structured outputs and suggests promising directions for future work. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.


OctoPack: Instruction Tuning Code Large Language Models

arXiv.org Artificial Intelligence

Finetuning large language models (LLMs) on instructions leads to vast performance improvements on natural language tasks. We apply instruction tuning using code, leveraging the natural structure of Git commits, which pair code changes with human instructions. We compile CommitPack: 4 terabytes of Git commits across 350 programming languages. We benchmark CommitPack against other natural and synthetic code instructions (xP3x, Self-Instruct, OASST) on the 16B parameter StarCoder model, and achieve state-of-the-art performance among models not trained on OpenAI outputs, on the HumanEval Python benchmark (46.2% pass@1). We further introduce HumanEvalPack, expanding the HumanEval benchmark to a total of 3 coding tasks (Code Repair, Code Explanation, Code Synthesis) across 6 languages (Python, JavaScript, Java, Go, C++, Rust). Our models, OctoCoder and OctoGeeX, achieve the best performance across HumanEvalPack among all permissive models, demonstrating CommitPack's benefits in generalizing to a wider set of languages and natural coding tasks. Code, models and data are freely available at https://github.com/bigcode-project/octopack.


BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

arXiv.org Artificial Intelligence

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.


RobuT: A Systematic Study of Table QA Robustness Against Human-Annotated Adversarial Perturbations

arXiv.org Artificial Intelligence

Despite significant progress having been made in question answering on tabular data (Table QA), it's unclear whether, and to what extent existing Table QA models are robust to task-specific perturbations, e.g., replacing key question entities or shuffling table columns. To systematically study the robustness of Table QA models, we propose a benchmark called RobuT, which builds upon existing Table QA datasets (WTQ, WikiSQL-Weak, and SQA) and includes human-annotated adversarial perturbations in terms of table header, table content, and question. Our results indicate that both state-of-the-art Table QA models and large language models (e.g., GPT-3) with few-shot learning falter in these adversarial sets. We propose to address this problem by using large language models to generate adversarial examples to enhance training, which significantly improves the robustness of Table QA models. Our data and code is publicly available at https://github.com/yilunzhao/RobuT.


Crosslingual Generalization through Multitask Finetuning

arXiv.org Artificial Intelligence

Multitask prompted finetuning (MTF) has been shown to help large language models generalize to new tasks in a zero-shot setting, but so far explorations of MTF have focused on English data and models. We apply MTF to the pretrained multilingual BLOOM and mT5 model families to produce finetuned variants called BLOOMZ and mT0. We find finetuning large multilingual language models on English tasks with English prompts allows for task generalization to non-English languages that appear only in the pretraining corpus. Finetuning on multilingual tasks with English prompts further improves performance on English and non-English tasks leading to various state-of-the-art zero-shot results. We also investigate finetuning on multilingual tasks with prompts that have been machine-translated from English to match the language of each dataset. We find training on these machine-translated prompts leads to better performance on human-written prompts in the respective languages. Surprisingly, we find models are capable of zero-shot generalization to tasks in languages they have never intentionally seen. We conjecture that the models are learning higher-level capabilities that are both task- and language-agnostic. In addition, we introduce xP3, a composite of supervised datasets in 46 languages with English and machine-translated prompts. Our code, datasets and models are freely available at https://github.com/bigscience-workshop/xmtf.


GersteinLab at MEDIQA-Chat 2023: Clinical Note Summarization from Doctor-Patient Conversations through Fine-tuning and In-context Learning

arXiv.org Artificial Intelligence

This paper presents our contribution to the MEDIQA-2023 Dialogue2Note shared task, encompassing both subtask A and subtask B. We approach the task as a dialogue summarization problem and implement two distinct pipelines: (a) a fine-tuning of a pre-trained dialogue summarization model and GPT-3, and (b) few-shot in-context learning (ICL) using a large language model, GPT-4. Both methods achieve excellent results in terms of ROUGE-1 F1, BERTScore F1 (deberta-xlarge-mnli), and BLEURT, with scores of 0.4011, 0.7058, and 0.5421, respectively. Additionally, we predict the associated section headers using RoBERTa and SciBERT based classification models. Our team ranked fourth among all teams, while each team is allowed to submit three runs as part of their submission. We also utilize expert annotations to demonstrate that the notes generated through the ICL GPT-4 are better than all other baselines. The code for our submission is available.


CONFIT: Toward Faithful Dialogue Summarization with Linguistically-Informed Contrastive Fine-tuning

arXiv.org Artificial Intelligence

Factual inconsistencies in generated summaries severely limit the practical applications of abstractive dialogue summarization. Although significant progress has been achieved by using pre-trained models, substantial amounts of hallucinated content are found during the human evaluation. Pre-trained models are most commonly fine-tuned with cross-entropy loss for text summarization, which may not be an optimal strategy. In this work, we provide a typology of factual errors with annotation data to highlight the types of errors and move away from a binary understanding of factuality. We further propose a training strategy that improves the factual consistency and overall quality of summaries via a novel contrastive fine-tuning, called ConFiT. Based on our linguistically-informed typology of errors, we design different modular objectives that each target a specific type. Specifically, we utilize hard negative samples with errors to reduce the generation of factual inconsistency. In order to capture the key information between speakers, we also design a dialogue-specific loss. Using human evaluation and automatic faithfulness metrics, we show that our model significantly reduces all kinds of factual errors on the dialogue summarization, SAMSum corpus. Moreover, our model could be generalized to the meeting summarization, AMI corpus, and it produces significantly higher scores than most of the baselines on both datasets regarding word-overlap metrics.


Improving RNA Secondary Structure Design using Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Rising costs in recent years of developing new drugs and treatments have led to extensive research in optimization techniques in biomolecular design. Currently, the most widely used approach in biomolecular design is directed evolution, which is a greedy hill-climbing algorithm that simulates biological evolution. In this paper, we propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure. In addition to experimenting with the vanilla implementations of each reinforcement learning algorithm from standard libraries, we analyze variants of each algorithm in which we modify the algorithm's reward function and tune the model's hyperparameters. We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches and its ability to search the possible space of RNA sequences. We find that our DQN algorithm performs by far the best in this setting, contrasting with, in which PPO performs the best among all tested algorithms. Our results should be of interest to those in the biomolecular design community and should serve as a baseline for future experiments involving machine learning in molecule design.


Multi-modal Self-supervised Pre-training for Regulatory Genome Across Cell Types

arXiv.org Artificial Intelligence

In the genome biology research, regulatory genome modeling is an important topic for many regulatory downstream tasks, such as promoter classification, transaction factor binding sites prediction. The core problem is to model how regulatory elements interact with each other and its variability across different cell types. However, current deep learning methods often focus on modeling genome sequences of a fixed set of cell types and do not account for the interaction between multiple regulatory elements, making them only perform well on the cell types in the training set and lack the generalizability required in biological applications. In this work, we propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT. Specifically, we simultaneously take the 1d sequence of genome data and a 2d matrix of (transcription factors x regions) as the input, where three pre-training tasks are proposed to improve the robustness and generalizability of our model. We pre-train our model on the ATAC-seq dataset with 17 million genome sequences. We evaluate our GeneBERT on regulatory downstream tasks across different cell types, including promoter classification, transaction factor binding sites prediction, disease risk estimation, and splicing sites prediction. Extensive experiments demonstrate the effectiveness of multi-modal and self-supervised pre-training for large-scale regulatory genomics data.


FILM: A Fast, Interpretable, and Low-rank Metric Learning Approach for Sentence Matching

arXiv.org Artificial Intelligence

Detection of semantic similarity plays a vital role in sentence matching. It requires to learn discriminative representations of natural language. Recently, owing to more and more sophisticated model architecture, impressive progress has been made, along with a time-consuming training process and not-interpretable inference. To alleviate this problem, we explore a metric learning approach, named FILM (Fast, Interpretable, and Low-rank Metric learning) to efficiently find a high discriminative projection of the high-dimensional data. We construct this metric learning problem as a manifold optimization problem and solve it with the Cayley transformation method with the Barzilai-Borwein step size. In experiments, we apply FILM with triplet loss minimization objective to the Quora Challenge and Semantic Textual Similarity (STS) Task. The results demonstrate that the FILM method achieves superior performance as well as the fastest computation speed, which is consistent with our theoretical analysis of time complexity.