Not enough data to create a plot.
Try a different view from the menu above.
Tang, Nan
A Survey of NL2SQL with Large Language Models: Where are we, and where are we going?
Liu, Xinyu, Shen, Shuyu, Li, Boyan, Ma, Peixian, Jiang, Runzhi, Zhang, Yuxin, Fan, Ju, Li, Guoliang, Tang, Nan, Luo, Yuyu
Translating users' natural language queries (NL) into SQL queries (i.e., NL2SQL, a.k.a., Text-to-SQL) can significantly reduce barriers to accessing relational databases and support various commercial applications. The performance of NL2SQL has been greatly enhanced with the emergence of Large Language Models (LLMs). In this survey, we provide a comprehensive review of NL2SQL techniques powered by LLMs, covering its entire lifecycle from the following four aspects: (1) Model: NL2SQL translation techniques that tackle not only NL ambiguity and under-specification, but also properly map NL with database schema and instances; (2) Data: From the collection of training data, data synthesis due to training data scarcity, to NL2SQL benchmarks; (3) Evaluation: Evaluating NL2SQL methods from multiple angles using different metrics and granularities; and (4) Error Analysis: analyzing NL2SQL errors to find the root cause and guiding NL2SQL models to evolve. Moreover, we provide a rule of thumb for developing NL2SQL solutions. Finally, we discuss the research challenges and open problems of NL2SQL in the LLMs era.
Are Large Language Models a Good Replacement of Taxonomies?
Sun, Yushi, Xin, Hao, Sun, Kai, Xu, Yifan Ethan, Yang, Xiao, Dong, Xin Luna, Tang, Nan, Chen, Lei
Large language models (LLMs) demonstrate an impressive ability to internalize knowledge and answer natural language questions. Although previous studies validate that LLMs perform well on general knowledge while presenting poor performance on long-tail nuanced knowledge, the community is still doubtful about whether the traditional knowledge graphs should be replaced by LLMs. In this paper, we ask if the schema of knowledge graph (i.e., taxonomy) is made obsolete by LLMs. Intuitively, LLMs should perform well on common taxonomies and at taxonomy levels that are common to people. Unfortunately, there lacks a comprehensive benchmark that evaluates the LLMs over a wide range of taxonomies from common to specialized domains and at levels from root to leaf so that we can draw a confident conclusion. To narrow the research gap, we constructed a novel taxonomy hierarchical structure discovery benchmark named TaxoGlimpse to evaluate the performance of LLMs over taxonomies. TaxoGlimpse covers ten representative taxonomies from common to specialized domains with in-depth experiments of different levels of entities in this taxonomy from root to leaf. Our comprehensive experiments of eighteen state-of-the-art LLMs under three prompting settings validate that LLMs can still not well capture the knowledge of specialized taxonomies and leaf-level entities.
HAIChart: Human and AI Paired Visualization System
Xie, Yupeng, Luo, Yuyu, Li, Guoliang, Tang, Nan
The growing importance of data visualization in business intelligence and data science emphasizes the need for tools that can efficiently generate meaningful visualizations from large datasets. Existing tools fall into two main categories: human-powered tools (e.g., Tableau and PowerBI), which require intensive expert involvement, and AI-powered automated tools (e.g., Draco and Table2Charts), which often fall short of guessing specific user needs. In this paper, we aim to achieve the best of both worlds. Our key idea is to initially auto-generate a set of high-quality visualizations to minimize manual effort, then refine this process iteratively with user feedback to more closely align with their needs. To this end, we present HAIChart, a reinforcement learning-based framework designed to iteratively recommend good visualizations for a given dataset by incorporating user feedback. Specifically, we propose a Monte Carlo Graph Search-based visualization generation algorithm paired with a composite reward function to efficiently explore the visualization space and automatically generate good visualizations. We devise a visualization hints mechanism to actively incorporate user feedback, thus progressively refining the visualization generation module. We further prove that the top-k visualization hints selection problem is NP-hard and design an efficient algorithm. We conduct both quantitative evaluations and user studies, showing that HAIChart significantly outperforms state-of-the-art human-powered tools (21% better at Recall and 1.8 times faster) and AI-powered automatic tools (25.1% and 14.9% better in terms of Hit@3 and R10@30, respectively).
Are Large Language Models Good Statisticians?
Zhu, Yizhang, Du, Shiyin, Li, Boyan, Luo, Yuyu, Tang, Nan
Large Language Models (LLMs) have demonstrated impressive capabilities across a range of scientific tasks including mathematics, physics, and chemistry. Despite their successes, the effectiveness of LLMs in handling complex statistical tasks remains systematically under-explored. To bridge this gap, we introduce StatQA, a new benchmark designed for statistical analysis tasks. StatQA comprises 11,623 examples tailored to evaluate LLMs' proficiency in specialized statistical tasks and their applicability assessment capabilities, particularly for hypothesis testing methods. We systematically experiment with representative LLMs using various prompting strategies and show that even state-of-the-art models such as GPT-4o achieve a best performance of only 64.83%, indicating significant room for improvement. Notably, while open-source LLMs (e.g., LLaMA-3) show limited capability, those fine-tuned ones exhibit marked improvements, outperforming all in-context learning-based methods (e.g., GPT-4o). Moreover, our comparative human experiments highlight a striking contrast in error types between LLMs and humans: LLMs primarily make applicability errors, whereas humans mostly make statistical task confusion errors. This divergence highlights distinct areas of proficiency and deficiency, suggesting that combining LLM and human expertise could lead to complementary strengths, inviting further investigation into their collaborative potential.
CRAG -- Comprehensive RAG Benchmark
Yang, Xiao, Sun, Kai, Xin, Hao, Sun, Yushi, Bhalla, Nikita, Chen, Xiangsen, Choudhary, Sajal, Gui, Rongze Daniel, Jiang, Ziran Will, Jiang, Ziyu, Kong, Lingkun, Moran, Brian, Wang, Jiaqi, Xu, Yifan Ethan, Yan, An, Yang, Chenyu, Yuan, Eting, Zha, Hanwen, Tang, Nan, Chen, Lei, Scheffer, Nicolas, Liu, Yue, Shah, Nirav, Wanga, Rakesh, Kumar, Anuj, Yih, Wen-tau, Dong, Xin Luna
Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution to alleviate Large Language Model (LLM)'s deficiency in lack of knowledge. Existing RAG datasets, however, do not adequately represent the diverse and dynamic nature of real-world Question Answering (QA) tasks. To bridge this gap, we introduce the Comprehensive RAG Benchmark (CRAG), a factual question answering benchmark of 4,409 question-answer pairs and mock APIs to simulate web and Knowledge Graph (KG) search. CRAG is designed to encapsulate a diverse array of questions across five domains and eight question categories, reflecting varied entity popularity from popular to long-tail, and temporal dynamisms ranging from years to seconds. Our evaluation on this benchmark highlights the gap to fully trustworthy QA. Whereas most advanced LLMs achieve <=34% accuracy on CRAG, adding RAG in a straightforward manner improves the accuracy only to 44%. State-of-the-art industry RAG solutions only answer 63% questions without any hallucination. CRAG also reveals much lower accuracy in answering questions regarding facts with higher dynamism, lower popularity, or higher complexity, suggesting future research directions. The CRAG benchmark laid the groundwork for a KDD Cup 2024 challenge, attracting thousands of participants and submissions within the first 50 days of the competition. We commit to maintaining CRAG to serve research communities in advancing RAG solutions and general QA solutions.
Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts
Pang, Jing-Cheng, Yang, Si-Hang, Li, Kaiyuan, Zhang, Jiaji, Chen, Xiong-Hui, Tang, Nan, Yu, Yang
Reinforcement learning (RL) trains agents to accomplish complex tasks through environmental interaction data, but its capacity is also limited by the scope of the available data. To obtain a knowledgeable agent, a promising approach is to leverage the knowledge from large language models (LLMs). Despite previous studies combining LLMs with RL, seamless integration of the two components remains challenging due to their semantic gap. This paper introduces a novel method, Knowledgeable Agents from Language Model Rollouts (KALM), which extracts knowledge from LLMs in the form of imaginary rollouts that can be easily learned by the agent through offline reinforcement learning methods. The primary challenge of KALM lies in LLM grounding, as LLMs are inherently limited to textual data, whereas environmental data often comprise numerical vectors unseen to LLMs. To address this, KALM fine-tunes the LLM to perform various tasks based on environmental data, including bidirectional translation between natural language descriptions of skills and their corresponding rollout data. This grounding process enhances the LLM's comprehension of environmental dynamics, enabling it to generate diverse and meaningful imaginary rollouts that reflect novel skills. Initial empirical evaluations on the CLEVR-Robot environment demonstrate that KALM enables agents to complete complex rephrasings of task goals and extend their capabilities to novel tasks requiring unprecedented optimal behaviors. KALM achieves a success rate of 46% in executing tasks with unseen goals, substantially surpassing the 26% success rate achieved by baseline methods. Furthermore, KALM effectively enables the LLM to comprehend environmental dynamics, resulting in the generation of meaningful imaginary rollouts that reflect novel skills and demonstrate the seamless integration of large language models and reinforcement learning.
Empowering Language Models with Active Inquiry for Deeper Understanding
Pang, Jing-Cheng, Fan, Heng-Bo, Wang, Pengyuan, Xiao, Jia-Hao, Tang, Nan, Yang, Si-Hang, Jia, Chengxing, Huang, Sheng-Jun, Yu, Yang
The rise of large language models (LLMs) has revolutionized the way that we interact with artificial intelligence systems through natural language. However, LLMs often misinterpret user queries because of their uncertain intention, leading to less helpful responses. In natural human interactions, clarification is sought through targeted questioning to uncover obscure information. Thus, in this paper, we introduce LaMAI (Language Model with Active Inquiry), designed to endow LLMs with this same level of interactive engagement. LaMAI leverages active learning techniques to raise the most informative questions, fostering a dynamic bidirectional dialogue. This approach not only narrows the contextual gap but also refines the output of the LLMs, aligning it more closely with user expectations. Our empirical studies, across a variety of complex datasets where LLMs have limited conversational context, demonstrate the effectiveness of LaMAI. The method improves answer accuracy from 31.9% to 50.9%, outperforming other leading question-answering frameworks. Moreover, in scenarios involving human participants, LaMAI consistently generates responses that are superior or comparable to baseline methods in more than 82% of the cases. The applicability of LaMAI is further evidenced by its successful integration with various LLMs, highlighting its potential for the future of interactive language models.
Cost-Effective In-Context Learning for Entity Resolution: A Design Space Exploration
Fan, Meihao, Han, Xiaoyue, Fan, Ju, Chai, Chengliang, Tang, Nan, Li, Guoliang, Du, Xiaoyong
Entity resolution (ER) is an important data integration task with a wide spectrum of applications. The state-of-the-art solutions on ER rely on pre-trained language models (PLMs), which require fine-tuning on a lot of labeled matching/non-matching entity pairs. Recently, large languages models (LLMs), such as GPT-4, have shown the ability to perform many tasks without tuning model parameters, which is known as in-context learning (ICL) that facilitates effective learning from a few labeled input context demonstrations. However, existing ICL approaches to ER typically necessitate providing a task description and a set of demonstrations for each entity pair and thus have limitations on the monetary cost of interfacing LLMs. To address the problem, in this paper, we provide a comprehensive study to investigate how to develop a cost-effective batch prompting approach to ER. We introduce a framework BATCHER consisting of demonstration selection and question batching and explore different design choices that support batch prompting for ER. We also devise a covering-based demonstration selection strategy that achieves an effective balance between matching accuracy and monetary cost. We conduct a thorough evaluation to explore the design space and evaluate our proposed strategies. Through extensive experiments, we find that batch prompting is very cost-effective for ER, compared with not only PLM-based methods fine-tuned with extensive labeled data but also LLM-based methods with manually designed prompting. We also provide guidance for selecting appropriate design choices for batch prompting.
SEED: Domain-Specific Data Curation With Large Language Models
Chen, Zui, Cao, Lei, Madden, Sam, Kraska, Tim, Shang, Zeyuan, Fan, Ju, Tang, Nan, Gu, Zihui, Liu, Chunwei, Cafarella, Michael
Data curation tasks that prepare data for analytics are critical for turning data into actionable insights. However, due to the diverse requirements of applications in different domains, generic off-the-shelf tools are typically insufficient. As a result, data scientists often have to develop domain-specific solutions tailored to both the dataset and the task, e.g. writing domain-specific code or training machine learning models on a sufficient number of annotated examples. This process is notoriously difficult and time-consuming. We present SEED, an LLM-as-compiler approach that automatically generates domain-specific data curation solutions via Large Language Models (LLMs). Once the user describes a task, input data, and expected output, the SEED compiler produces an executable pipeline composed of LLM-generated code, small model, and data access modules. SEED uses these generated modules to process most of the data records and dynamically decides when the LLM should step in to directly process some individual records, possibly using the data-access modules to retrieve relevant information from the data sources to assist the LLM in solving the task. To validate this new, revolutionary approach, we conducted experiments on 9 datasets spanning over 5 data curation tasks. The results show that SEED generates domain-specific solutions that significantly outperform their generic counterparts, often approaching the performance of the manually curated solutions that use thousands of labeled training examples. Moreover, in comparison to solutions that use the LLM on every data record, SEED achieves state-of-the-art or comparable few-shot performance, while significantly reducing the number of LLM calls.
VerifAI: Verified Generative AI
Tang, Nan, Yang, Chenyu, Fan, Ju, Cao, Lei, Luo, Yuyu, Halevy, Alon
Generative AI has made significant strides, yet concerns about the accuracy and reliability of its outputs continue to grow. Such inaccuracies can have serious consequences such as inaccurate decision-making, the spread of false information, privacy violations, legal liabilities, and more. Although efforts to address these risks are underway, including explainable AI and responsible AI practices such as transparency, privacy protection, bias mitigation, and social and environmental responsibility, misinformation caused by generative AI will remain a significant challenge. We propose that verifying the outputs of generative AI from a data management perspective is an emerging issue for generative AI. This involves analyzing the underlying data from multi-modal data lakes, including text files, tables, and knowledge graphs, and assessing its quality and consistency. By doing so, we can establish a stronger foundation for evaluating the outputs of generative AI models. Such an approach can ensure the correctness of generative AI, promote transparency, and enable decision-making with greater confidence. Our vision is to promote the development of verifiable generative AI and contribute to a more trustworthy and responsible use of AI.