Not enough data to create a plot.
Try a different view from the menu above.
Tang, Jinyi
Think and Retrieval: A Hypothesis Knowledge Graph Enhanced Medical Large Language Models
Jiang, Xinke, Zhang, Ruizhe, Xu, Yongxin, Qiu, Rihong, Fang, Yue, Wang, Zhiyuan, Tang, Jinyi, Ding, Hongxin, Chu, Xu, Zhao, Junfeng, Wang, Yasha
We explore how the rise of Large Language Models (LLMs) significantly impacts task performance in the field of Natural Language Processing. We focus on two strategies, Retrieval-Augmented Generation (RAG) and Fine-Tuning (FT), and propose the Hypothesis Knowledge Graph Enhanced (HyKGE) framework, leveraging a knowledge graph to enhance medical LLMs. By integrating LLMs and knowledge graphs, HyKGE demonstrates superior performance in addressing accuracy and interpretability challenges, presenting potential applications in the medical domain. Our evaluations using real-world datasets highlight HyKGE's superiority in providing accurate knowledge with precise confidence, particularly in complex and difficult scenarios. The code will be available until published.