Goto

Collaborating Authors

 Tang, Huajin


Biologically inspired structure learning with reverse knowledge distillation for spiking neural networks

arXiv.org Artificial Intelligence

Spiking neural networks (SNNs) have superb characteristics in sensory information recognition tasks due to their biological plausibility. However, the performance of some current spiking-based models is limited by their structures which means either fully connected or too-deep structures bring too much redundancy. This redundancy from both connection and neurons is one of the key factors hindering the practical application of SNNs. Although Some pruning methods were proposed to tackle this problem, they normally ignored the fact the neural topology in the human brain could be adjusted dynamically. Inspired by this, this paper proposed an evolutionary-based structure construction method for constructing more reasonable SNNs. By integrating the knowledge distillation and connection pruning method, the synaptic connections in SNNs can be optimized dynamically to reach an optimal state. As a result, the structure of SNNs could not only absorb knowledge from the teacher model but also search for deep but sparse network topology. Experimental results on CIFAR100 and DVS-Gesture show that the proposed structure learning method can get pretty well performance while reducing the connection redundancy. The proposed method explores a novel dynamical way for structure learning from scratch in SNNs which could build a bridge to close the gap between deep learning and bio-inspired neural dynamics.


Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper Directly-Trained Spiking Neural Networks

arXiv.org Artificial Intelligence

Spiking neural networks (SNNs) are bio-inspired neural networks with asynchronous discrete and sparse characteristics, which have increasingly manifested their superiority in low energy consumption. Recent research is devoted to utilizing spatio-temporal information to directly train SNNs by backpropagation. However, the binary and non-differentiable properties of spike activities force directly trained SNNs to suffer from serious gradient vanishing and network degradation, which greatly limits the performance of directly trained SNNs and prevents them from going deeper. In this paper, we propose a multi-level firing (MLF) method based on the existing spatio-temporal back propagation (STBP) method, and spiking dormant-suppressed residual network (spiking DS-ResNet). MLF enables more efficient gradient propagation and the incremental expression ability of the neurons. Spiking DS-ResNet can efficiently perform identity mapping of discrete spikes, as well as provide a more suitable connection for gradient propagation in deep SNNs. With the proposed method, our model achieves superior performances on a non-neuromorphic dataset and two neuromorphic datasets with much fewer trainable parameters and demonstrates the great ability to combat the gradient vanishing and degradation problem in deep SNNs.


Constructing Deep Spiking Neural Networks from Artificial Neural Networks with Knowledge Distillation

arXiv.org Artificial Intelligence

Spiking neural networks (SNNs) are well known as the brain-inspired models with high computing efficiency, due to a key component that they utilize spikes as information units, close to the biological neural systems. Although spiking based models are energy efficient by taking advantage of discrete spike signals, their performance is limited by current network structures and their training methods. As discrete signals, typical SNNs cannot apply the gradient descent rules directly into parameters adjustment as artificial neural networks (ANNs). Aiming at this limitation, here we propose a novel method of constructing deep SNN models with knowledge distillation (KD) that uses ANN as teacher model and SNN as student model. Through ANN-SNN joint training algorithm, the student SNN model can learn rich feature information from the teacher ANN model through the KD method, yet it avoids training SNN from scratch when communicating with non-differentiable spikes. Our method can not only build a more efficient deep spiking structure feasibly and reasonably, but use few time steps to train whole model compared to direct training or ANN to SNN methods. More importantly, it has a superb ability of noise immunity for various types of artificial noises and natural signals. The proposed novel method provides efficient ways to improve the performance of SNN through constructing deeper structures in a high-throughput fashion, with potential usage for light and efficient brain-inspired computing of practical scenarios.


Human-Level Control through Directly-Trained Deep Spiking Q-Networks

arXiv.org Artificial Intelligence

As the third-generation neural networks, Spiking Neural Networks (SNNs) have great potential on neuromorphic hardware because of their high energy-efficiency. However, Deep Spiking Reinforcement Learning (DSRL), i.e., the Reinforcement Learning (RL) based on SNNs, is still in its preliminary stage due to the binary output and the non-differentiable property of the spiking function. To address these issues, we propose a Deep Spiking Q-Network (DSQN) in this paper. Specifically, we propose a directly-trained deep spiking reinforcement learning architecture based on the Leaky Integrate-and-Fire (LIF) neurons and Deep Q-Network (DQN). Then, we adapt a direct spiking learning algorithm for the Deep Spiking Q-Network. We further demonstrate the advantages of using LIF neurons in DSQN theoretically. Comprehensive experiments have been conducted on 17 top-performing Atari games to compare our method with the state-of-the-art conversion method. The experimental results demonstrate the superiority of our method in terms of performance, stability, robustness and energy-efficiency. To the best of our knowledge, our work is the first one to achieve state-of-the-art performance on multiple Atari games with the directly-trained SNN.


Towards Lossless ANN-SNN Conversion under Ultra-Low Latency with Dual-Phase Optimization

arXiv.org Artificial Intelligence

Spiking neural network (SNN) operating with asynchronous discrete events shows higher energy efficiency. A popular approach to implementing deep SNNs is ANN-SNN conversion combining both efficient training of ANNs and efficient inference of SNNs. However, due to the intrinsic difference between ANNs and SNNs, the accuracy loss is usually non-negligible, especially under low simulating steps. It restricts the applications of SNN on latency-sensitive edge devices greatly. In this paper, we identify such performance degradation stems from the misrepresentation of the negative or overflow residual membrane potential in SNNs. Inspired by this, we systematically analyze the conversion error between SNNs and ANNs, and then decompose it into three folds: quantization error, clipping error, and residual membrane potential representation error. With such insights, we propose a dual-phase conversion algorithm to minimize those errors separately. Besides, we show each phase achieves significant performance gains in a complementary manner. We evaluate our method on challenging datasets including CIFAR-10, CIFAR-100, and ImageNet datasets. The experimental results show the proposed method achieves the state-of-the-art in terms of both accuracy and latency with promising energy preservation compared to ANNs. For instance, our method achieves an accuracy of 73.20% on CIFAR-100 in only 2 time steps with 15.7$\times$ less energy consumption.


A Unified Framework for Representation-based Subspace Clustering of Out-of-sample and Large-scale Data

arXiv.org Machine Learning

Under the framework of spectral clustering, the key of subspace clustering is building a similarity graph which describes the neighborhood relations among data points. Some recent works build the graph using sparse, low-rank, and $\ell_2$-norm-based representation, and have achieved state-of-the-art performance. However, these methods have suffered from the following two limitations. First, the time complexities of these methods are at least proportional to the cube of the data size, which make those methods inefficient for solving large-scale problems. Second, they cannot cope with out-of-sample data that are not used to construct the similarity graph. To cluster each out-of-sample datum, the methods have to recalculate the similarity graph and the cluster membership of the whole data set. In this paper, we propose a unified framework which makes representation-based subspace clustering algorithms feasible to cluster both out-of-sample and large-scale data. Under our framework, the large-scale problem is tackled by converting it as out-of-sample problem in the manner of "sampling, clustering, coding, and classifying". Furthermore, we give an estimation for the error bounds by treating each subspace as a point in a hyperspace. Extensive experimental results on various benchmark data sets show that our methods outperform several recently-proposed scalable methods in clustering large-scale data set.


Robust Subspace Clustering via Thresholding Ridge Regression

AAAI Conferences

Given a data set from a union of multiple linear subspaces, a robust subspace clustering algorithm fits each group of data points with a low-dimensional subspace and then clusters these data even though they are grossly corrupted or sampled from the union of dependent subspaces. Under the framework of spectral clustering, recent works using sparse representation, low rank representation and their extensions achieve robust clustering results by formulating the errors (e.g., corruptions) into their objective functions so that the errors can be removed from the inputs. However, these approaches have suffered from the limitation that the structure of the errors should be known as the prior knowledge. In this paper, we present a new method of robust subspace clustering by eliminating the effect of the errors from the projection space (representation) rather than from the input space. We firstly prove that ell_1-, ell_2-, and ell_infty-norm-based linear projection spaces share the property of intra-subspace projection dominance, i.e., the coefficients over intra-subspace data points are larger than those over inter-subspace data points. Based on this property, we propose a robust and efficient subspace clustering algorithm, called Thresholding Ridge Regression (TRR). TRR calculates the ell2-norm-based coefficients of a given data set and performs a hard thresholding operator; and then the coefficients are used to build a similarity graph for clustering. Experimental studies show that TRR outperforms the state-of-the-art methods with respect to clustering quality, robustness, and time-saving.