Goto

Collaborating Authors

 Tang, Anke


Parameter Efficient Multi-task Model Fusion with Partial Linearization

arXiv.org Artificial Intelligence

Large pre-trained models have enabled significant advances in machine learning and served as foundation components. Model fusion methods, such as task arithmetic, have been proven to be powerful and scalable to incorporate fine-tuned weights from different tasks into a multi-task model. However, efficiently fine-tuning large pre-trained models on multiple downstream tasks remains challenging, leading to inefficient multi-task model fusion. In this work, we propose a novel method to improve multi-task fusion for parameter-efficient fine-tuning techniques like LoRA fine-tuning. Specifically, our approach partially linearizes only the adapter modules and applies task arithmetic over the linearized adapters. This allows us to leverage the the advantages of model fusion over linearized fine-tuning, while still performing fine-tuning and inference efficiently. We demonstrate that our partial linearization technique enables a more effective fusion of multiple tasks into a single model, outperforming standard adapter tuning and task arithmetic alone. Experimental results demonstrate the capabilities of our proposed partial linearization technique to effectively construct unified multi-task models via the fusion of fine-tuned task vectors. We evaluate performance over an increasing number of tasks and find that our approach outperforms standard parameter-efficient fine-tuning techniques. The results highlight the benefits of partial linearization for scalable and efficient multi-task model fusion.


Improving Heterogeneous Model Reuse by Density Estimation

arXiv.org Artificial Intelligence

This paper studies multiparty learning, aiming to learn a model using the private data of different participants. Model reuse is a promising solution for multiparty learning, assuming that a local model has been trained for each party. Considering the potential sample selection bias among different parties, some heterogeneous model reuse approaches have been developed. However, although pre-trained local classifiers are utilized in these approaches, the characteristics of the local data are not well exploited. This motivates us to estimate the density of local data and design an auxiliary model together with the local classifiers for reuse. To address the scenarios where some local models are not well pre-trained, we further design a multiparty cross-entropy loss for calibration. Upon existing works, we address a challenging problem of heterogeneous model reuse from a decision theory perspective and take advantage of recent advances in density estimation. Experimental results on both synthetic and benchmark data demonstrate the superiority of the proposed method.