Goto

Collaborating Authors

 Tan, Wei


AUC Maximization for Low-Resource Named Entity Recognition

arXiv.org Artificial Intelligence

Current work in named entity recognition (NER) uses either cross entropy (CE) or conditional random fields (CRF) as the objective/loss functions to optimize the underlying NER model. Both of these traditional objective functions for the NER problem generally produce adequate performance when the data distribution is balanced and there are sufficient annotated training examples. But since NER is inherently an imbalanced tagging problem, the model performance under the low-resource settings could suffer using these standard objective functions. Based on recent advances in area under the ROC curve (AUC) maximization, we propose to optimize the NER model by maximizing the AUC score. We give evidence that by simply combining two binary-classifiers that maximize the AUC score, significant performance improvement over traditional loss functions is achieved under low-resource NER settings. We also conduct extensive experiments to demonstrate the advantages of our method under the low-resource and highly-imbalanced data distribution settings. To the best of our knowledge, this is the first work that brings AUC maximization to the NER setting. Furthermore, we show that our method is agnostic to different types of NER embeddings, models and domains. The code to replicate this work will be provided upon request.


Does Informativeness Matter? Active Learning for Educational Dialogue Act Classification

arXiv.org Artificial Intelligence

Dialogue Acts (DAs) can be used to explain what expert tutors do and what students know during the tutoring process. Most empirical studies adopt the random sampling method to obtain sentence samples for manual annotation of DAs, which are then used to train DA classifiers. However, these studies have paid little attention to sample informativeness, which can reflect the information quantity of the selected samples and inform the extent to which a classifier can learn patterns. Notably, the informativeness level may vary among the samples and the classifier might only need a small amount of low informative samples to learn the patterns. Random sampling may overlook sample informativeness, which consumes human labelling costs and contributes less to training the classifiers. As an alternative, researchers suggest employing statistical sampling methods of Active Learning (AL) to identify the informative samples for training the classifiers. However, the use of AL methods in educational DA classification tasks is under-explored. In this paper, we examine the informativeness of annotated sentence samples. Then, the study investigates how the AL methods can select informative samples to support DA classifiers in the AL sampling process. The results reveal that most annotated sentences present low informativeness in the training dataset and the patterns of these sentences can be easily captured by the DA classifier. We also demonstrate how AL methods can reduce the cost of manual annotation in the AL sampling process.


Diversity Enhanced Active Learning with Strictly Proper Scoring Rules

arXiv.org Artificial Intelligence

We study acquisition functions for active learning (AL) for text classification. The Expected Loss Reduction (ELR) method focuses on a Bayesian estimate of the reduction in classification error, recently updated with Mean Objective Cost of Uncertainty (MOCU). We convert the ELR framework to estimate the increase in (strictly proper) scores like log probability or negative mean square error, which we call Bayesian Estimate of Mean Proper Scores (BEMPS). We also prove convergence results borrowing techniques used with MOCU. In order to allow better experimentation with the new acquisition functions, we develop a complementary batch AL algorithm, which encourages diversity in the vector of expected changes in scores for unlabelled data. To allow high performance text classifiers, we combine ensembling and dynamic validation set construction on pretrained language models. Extensive experimental evaluation then explores how these different acquisition functions perform. The results show that the use of mean square error and log probability with BEMPS yields robust acquisition functions, which consistently outperform the others tested.


Dilated Recurrent Neural Networks

Neural Information Processing Systems

Learning with recurrent neural networks (RNNs) on long sequences is a notoriously difficult task. There are three major challenges: 1) complex dependencies, 2) vanishing and exploding gradients, and 3) efficient parallelization. In this paper, we introduce a simple yet effective RNN connection structure, the DilatedRNN, which simultaneously tackles all of these challenges. The proposed architecture is characterized by multi-resolution dilated recurrent skip connections and can be combined flexibly with diverse RNN cells. Moreover, the DilatedRNN reduces the number of parameters needed and enhances training efficiency significantly, while matching state-of-the-art performance (even with standard RNN cells) in tasks involving very long-term dependencies. To provide a theory-based quantification of the architecture's advantages, we introduce a memory capacity measure, the mean recurrent length, which is more suitable for RNNs with long skip connections than existing measures. We rigorously prove the advantages of the DilatedRNN over other recurrent neural architectures. The code for our method is publicly available at https://github.com/code-terminator/DilatedRNN.