Taieb, Souhaib Ben
On the Predictive Accuracy of Neural Temporal Point Process Models for Continuous-time Event Data
Bosser, Tanguy, Taieb, Souhaib Ben
Temporal Point Processes (TPPs) serve as the standard mathematical framework for modeling asynchronous event sequences in continuous time. However, classical TPP models are often constrained by strong assumptions, limiting their ability to capture complex real-world event dynamics. To overcome this limitation, researchers have proposed Neural TPPs, which leverage neural network parametrizations to offer more flexible and efficient modeling. While recent studies demonstrate the effectiveness of Neural TPPs, they often lack a unified setup, relying on different baselines, datasets, and experimental configurations. This makes it challenging to identify the key factors driving improvements in predictive accuracy, hindering research progress. To bridge this gap, we present a comprehensive large-scale experimental study that systematically evaluates the predictive accuracy of state-of-the-art neural TPP models. Our study encompasses multiple real-world and synthetic event sequence datasets, following a carefully designed unified setup. We thoroughly investigate the influence of major architectural components such as event encoding, history encoder, and decoder parametrization on both time and mark prediction tasks. Additionally, we delve into the less explored area of probabilistic calibration for neural TPP models. By analyzing our results, we draw insightful conclusions regarding the significance of history size and the impact of architectural components on predictive accuracy. Furthermore, we shed light on the miscalibration of mark distributions in neural TPP models. Our study aims to provide valuable insights into the performance and characteristics of neural TPP models, contributing to a better understanding of their strengths and limitations.
A Large-Scale Study of Probabilistic Calibration in Neural Network Regression
Dheur, Victor, Taieb, Souhaib Ben
Accurate probabilistic predictions are essential for optimal decision making. While neural network miscalibration has been studied primarily in classification, we investigate this in the less-explored domain of regression. We conduct the largest empirical study to date to assess the probabilistic calibration of neural networks. We also analyze the performance of recalibration, conformal, and regularization methods to enhance probabilistic calibration. Additionally, we introduce novel differentiable recalibration and regularization methods, uncovering new insights into their effectiveness. Our findings reveal that regularization methods offer a favorable tradeoff between calibration and sharpness. Post-hoc methods exhibit superior probabilistic calibration, which we attribute to the finite-sample coverage guarantee of conformal prediction. Furthermore, we demonstrate that quantile recalibration can be considered as a specific case of conformal prediction. Our study is fully reproducible and implemented in a common code base for fair comparisons.
HierarchicalForecast: A Reference Framework for Hierarchical Forecasting in Python
Olivares, Kin G., Garza, Federico, Luo, David, Challรบ, Cristian, Mergenthaler, Max, Taieb, Souhaib Ben, Wickramasuriya, Shanika L., Dubrawski, Artur
Large collections of time series data are commonly organized into structures with different levels of aggregation; examples include product and geographical groupings. It is often important to ensure that the forecasts are coherent so that the predicted values at disaggregate levels add up to the aggregate forecast. The growing interest of the Machine Learning community in hierarchical forecasting systems indicates that we are in a propitious moment to ensure that scientific endeavors are grounded on sound baselines. For this reason, we put forward the HierarchicalForecast library, which contains preprocessed publicly available datasets, evaluation metrics, and a compiled set of statistical baseline models. Our Python-based reference framework aims to bridge the gap between statistical and econometric modeling, and Machine Learning forecasting research.
Forecasting: theory and practice
Petropoulos, Fotios, Apiletti, Daniele, Assimakopoulos, Vassilios, Babai, Mohamed Zied, Barrow, Devon K., Taieb, Souhaib Ben, Bergmeir, Christoph, Bessa, Ricardo J., Bijak, Jakub, Boylan, John E., Browell, Jethro, Carnevale, Claudio, Castle, Jennifer L., Cirillo, Pasquale, Clements, Michael P., Cordeiro, Clara, Oliveira, Fernando Luiz Cyrino, De Baets, Shari, Dokumentov, Alexander, Ellison, Joanne, Fiszeder, Piotr, Franses, Philip Hans, Frazier, David T., Gilliland, Michael, Gรถnรผl, M. Sinan, Goodwin, Paul, Grossi, Luigi, Grushka-Cockayne, Yael, Guidolin, Mariangela, Guidolin, Massimo, Gunter, Ulrich, Guo, Xiaojia, Guseo, Renato, Harvey, Nigel, Hendry, David F., Hollyman, Ross, Januschowski, Tim, Jeon, Jooyoung, Jose, Victor Richmond R., Kang, Yanfei, Koehler, Anne B., Kolassa, Stephan, Kourentzes, Nikolaos, Leva, Sonia, Li, Feng, Litsiou, Konstantia, Makridakis, Spyros, Martin, Gael M., Martinez, Andrew B., Meeran, Sheik, Modis, Theodore, Nikolopoulos, Konstantinos, รnkal, Dilek, Paccagnini, Alessia, Panagiotelis, Anastasios, Panapakidis, Ioannis, Pavรญa, Jose M., Pedio, Manuela, Pedregal, Diego J., Pinson, Pierre, Ramos, Patrรญcia, Rapach, David E., Reade, J. James, Rostami-Tabar, Bahman, Rubaszek, Michaล, Sermpinis, Georgios, Shang, Han Lin, Spiliotis, Evangelos, Syntetos, Aris A., Talagala, Priyanga Dilini, Talagala, Thiyanga S., Tashman, Len, Thomakos, Dimitrios, Thorarinsdottir, Thordis, Todini, Ezio, Arenas, Juan Ramรณn Trapero, Wang, Xiaoqian, Winkler, Robert L., Yusupova, Alisa, Ziel, Florian
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
Regularization in Hierarchical Time Series Forecasting with Application to Electricity Smart Meter Data
Taieb, Souhaib Ben (Monash University) | Yu, Jiafan (Stanford University) | Barreto, Mateus Neves (Universidade Estadual de Campinas) | Rajagopal, Ram (Stanford University)
Accurate electricity demand forecast plays a key role in sustainable power systems. It enables better decision making in the planning of electricity generation and distribution for many use cases. The electricity demand data can often be represented in a hierarchical structure. For example, the electricity consumption of a whole country could be disaggregated by states, cities, and households. Hierarchical forecasts require not only good prediction accuracy at each level of the hierarchy, but also the consistency between different levels. State-of-the-art hierarchical forecasting methods usually apply adjustments on the individual level forecasts to satisfy the aggregation constraints. However, the high-dimensionality of the unpenalized regression problem and the estimation errors in the high-dimensional error covariance matrix can lead to increased variability in the revised forecasts with poor prediction performance. In order to provide more robustness to estimation errors in the adjustments, we present a new hierarchical forecasting algorithm that computes sparse adjustments while still preserving the aggregation constraints. We formulate the problem as a high-dimensional penalized regression, which can be efficiently solved using cyclical coordinate descent methods. We also conduct experiments using a large-scale hierarchical electricity demand data. The results confirm the effectiveness of our approach compared to state-of-the-art hierarchical forecasting methods, in both the sparsity of the adjustments and the prediction accuracy. The proposed approach to hierarchical forecasting could be useful for energy generation including solar and wind energy, as well as numerous other applications.
A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
Taieb, Souhaib Ben, Bontempi, Gianluca, Atiya, Amir, Sorjamaa, Antti
Multi-step ahead forecasting is still an open challenge in time series forecasting. Several approaches that deal with this complex problem have been proposed in the literature but an extensive comparison on a large number of tasks is still missing. This paper aims to fill this gap by reviewing existing strategies for multi-step ahead forecasting and comparing them in theoretical and practical terms. To attain such an objective, we performed a large scale comparison of these different strategies using a large experimental benchmark (namely the 111 series from the NN5 forecasting competition). In addition, we considered the effects of deseasonalization, input variable selection, and forecast combination on these strategies and on multi-step ahead forecasting at large. The following three findings appear to be consistently supported by the experimental results: Multiple-Output strategies are the best performing approaches, deseasonalization leads to uniformly improved forecast accuracy, and input selection is more effective when performed in conjunction with deseasonalization.