Not enough data to create a plot.
Try a different view from the menu above.
Taba, Brian
Event-based Vision: A Survey
Gallego, Guillermo, Delbruck, Tobi, Orchard, Garrick, Bartolozzi, Chiara, Taba, Brian, Censi, Andrea, Leutenegger, Stefan, Davison, Andrew, Conradt, Joerg, Daniilidis, Kostas, Scaramuzza, Davide
Event cameras are bio-inspired sensors that work radically different from traditional cameras. Instead of capturing images at a fixed rate, they measure per-pixel brightness changes asynchronously. This results in a stream of events, which encode the time, location and sign of the brightness changes. Event cameras posses outstanding properties compared to traditional cameras: very high dynamic range (140 dB vs. 60 dB), high temporal resolution (in the order of microseconds), low power consumption, and do not suffer from motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as high speed and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.
Silicon growth cones map silicon retina
Taba, Brian, Boahen, Kwabena
We demonstrate the first fully hardware implementation of retinotopic self-organization, from photon transduction to neural map formation. A silicon retina transduces patterned illumination into correlated spike trains that drive a population of silicon growth cones to automatically wire a topographic mapping by migrating toward sources of a diffusible guidance cue that is released by postsynaptic spikes. We varied the pattern ofillumination to steer growth cones projected by different retinal ganglion cell types to self-organize segregated or coordinated retinotopic maps.
Topographic Map Formation by Silicon Growth Cones
Taba, Brian, Boahen, Kwabena A.
We describe a self-configuring neuromorphic chip that uses a model of activity-dependent axon remodeling to automatically wire topographic maps based solely on input correlations. Axons are guided by growth cones, which are modeled in analog VLSI for the first time. Growth cones migrate up neurotropin gradients, which are represented by charge diffusing in transistor channels. Virtual axons move by rerouting address-events. We refined an initially gross topographic projection by simulating retinal wave input.
Topographic Map Formation by Silicon Growth Cones
Taba, Brian, Boahen, Kwabena A.
We describe a self-configuring neuromorphic chip that uses a model of activity-dependent axon remodeling to automatically wire topographic maps based solely on input correlations. Axons are guided by growth cones, which are modeled in analog VLSI for the first time. Growth cones migrate up neurotropin gradients, which are represented by charge diffusing in transistor channels. Virtual axons move by rerouting address-events. We refined an initially gross topographic projection by simulating retinal wave input. 1 Neuromorphic Systems Neuromorphic engineers are attempting to match the computational efficiency of biological systems by morphing neurocircuitry into silicon circuits [1].